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PREFACE

In introducing the collection of problems forming the substance
of this work, it is perhaps necessary to offer more explanations
than is usually the case for a mathematical monograph. The
problems listed are regarded as unsolved in the sense that thie),
.uthor does not know the answers. In this sense the structuge of
this small collection differs inherently from that of the well-
known collection of problems by Pélya and Szegt [1].The gﬁesﬁons,
drawn from several fields of mathematics, are.fwinoc means
chosen to represent the central problems of th‘ese' fields, but
rather reflect the personal interests of the a.uthér. Yor the main
part, the motif of the collection is a set-theoretical point of view
and a combinatorial approach to problerAin point set topology,
some elementary parts of algebra, andithe theory of functions of
a real variable. R\

in spirit, the questions coHs¥ sbdaidibrhey firgtinpart of this
collection belong to a complex of problems represented in the
Scottish Book. This was I\S:: bf problems compiled by mathemati-
clans of Lwow in Polar% efore World War II, also containing
problems written dewml by visiting mathematicians from other
cities in Poland a.é&from other countries. The author has recently
translated t}{iﬂécument into English and distributed it privately;
the interest\shown by some mathematicians in this collection
eNCoura, &4 him to prepare the present tract for publication.
Mapyaf’ the problems contained here were indeed first inscribed
in the’ Scottish Fook, but the greater part of the material is of
later origin beginning with the years spent at Harvard (1936-1940)
and a large propertion stems from recent years, appearing here
for the first time. Many of the problems originated through con-
versations with others and were stimulated by the transitory
interests of the moment in various mathematical centers. In ad-

il



viii ' PREFACE

dition, several problems were communicated by friends for in-
clusion in this coliection. The last few chapters have a different
character: the stress is on computations on calculating machines
with examples of problems whose study through the use of this
modern tool would have, in the author's opinion, great henristic
value.

Most of the problems were seriously considered and worked
upon, but with different degrees of attention and time spentan
attempts to solve them. Some have been studied by othepgnath-
ematicians to whom they were communicated orally hg’t"n\thers:
have not been thoroughly investigated and it would no¥ surprise
the author if a number admitted trivial solutions Most of the
problems are, so to say, of mcdium difficultyt ‘A majority of
them should definitely not fall into the categdriof mere excrcises
te be solved by routine applications ofs\ kniown lemmas and
theorems. In fact one of the aims wgs\’a, selection of “simple’”
questions in various domains of mathematics; simple, for example,
in the sense that no elaborate defititions beyond those used in
general courses on set theory, Canalysis, and algcbra would be
necessary for their understan:dirf - The author believes that, on a
purely heuristic level” ‘Ziwgﬂf’ﬁ%ifzhofa‘fmfg%f?, if properly enlarged
and deepcned by others; would bring out the possible general and
typical common ‘fredséns” for the difficulties encountered in
quite diverse branches of mathematics,

The presentsituation in mathematical research is perhaps
different from that of previous epochs in its very great degree of
speciaﬁzgtio . The connections between different fields are
growing\more tenuous, or clse so general and purely formal,
thafg they become illusory. It has been said that unsolved problems

f\o{m the very life of mathematics ; certainly they can illuminate
\and, in the best cases, crystallize and summarize the essence of
the difficulties inherent in various fields, The very existence of
mathematies can be considered as fruitful only because it produces
sxmple_ and concise statements whose proofs are much more
complicated in comparison. Moreover, Gédel’s discovery {17 of the

existence of undecidable Propositions in every consistent System
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of mathematics, including arithmetic, renders the “probably
¢rue”’ propositions all the more precious, The intriguing possibility
which now exists a priort of undecidability lends an additional
flavor, to some at least, of the unsolved mathematical problems
icf. Weyl [1]).

The separation befween mathematical research stimulated by
pure mathematics alone and the ideas stemming from theoretical
physics has been increasing in the development of these fields
during the last few decades. This may seem at first sight surs
prising, since the ideas and models of reality employed nowadays
in physics fend toward increasing abstractness. However, its £p§
pears that on the whole, applied mathematics, so-called, "deals
3t the present time in the majority of cases, with qubstions of
classical physics—or else, when it concerns itselfgfit‘h the new
theories, its role is restricied to a purely technical intervention.
On the conceptual level onc does not have gnough, it seems, of
cross fertilization of ideas! In the authgr':s:()pinion it appears
Jikely that in the near future the ]arge’cl‘e:ss of concepts which
have their origin in Cantor’s set thec,ujy;[f], which have influenced
so many of the purely mathematit;él'djsciplines, will play a role

in physical theory. The difficgjiﬁé@tdi:ihﬁ pheppmeny, of divergence
in present formulations of §ild theory may indicate the need for
a type of mathematics,capable of dealing with physical problems
employing actual infipi}iés ab initio. Several clementary problems
are included here sghach are intended to indicate the nature of
such possible £ fomilations and the kind of mathematical schemes
which may belef use in some future physical theories.

The sel “eoretical motivation underlying the selection of
questiofisén the various fields to which the problems refer influenced
tlle"~(ih\(:>i}:e of the more elementary problems and made the il-
ludtehtion of the more sophisticated ideas of recent years, in topo-
logy or algebra for example, impractical.

It is impossible to give detailed credit to all who have indirectiy
contributed to the set of ideas illustrated in the list of problems,
but T would like to acknowledge in particular the pleasure of past
collaboration with Banach, Borsuk, Kuratowski, Schreler, and
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Mazur in Poland, and John von Neumann, Garrett Birkhoff,
J. C. Oxtoby, P. Erdés, and C. Everett in this country. Thanks
are due to Mrs. Lois Iles and Miss Marie Odell for their work in
preparing the manuscript for publication.

S. M. Urau
Fall, 1959
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CHAPTER 1

Set Theory

1. Introductory remarks

The outstanding unsolved problem of set theory is the well-
Lnewn continuum hypothesis of Cantor which asserts that the
power ¢ == 2% of the set of all real numbers is equal to the)
vower §,, the common power of all well-ordered noncoum@:b]e’
sets, all of whose segments are finite or countable. We shall not
iiscuss it here; Sierpinski’s book 71} in the Polish Ménograph
Collection deals extensively with various formulationhs of this
hypothesis and with problems which, on the surface, appear
more ‘‘concrete,” but are equivalent or lo i&dlly related to it.
(z6del [2? has investigated the question feomi the point of view
of certain special axiomatizations of set-theory. The principal
result is that in many such systems, ﬁ}dﬁtor’s hypothesis is either
true or else forms an indeper‘bder}"’c;létatgment. Also true or in-
dependent is the proposition. Y iR suBtey of the real
number system with “parad ical’’ properties are projective sets

CFhe problem of the continuum cannot

in the sense of Lusin [1@.\\
yet be regarded as settled, since none of the axiomatic formulations
of set theory can beednsidered as “definitive’’ orall-comprehensive,
and it is at presenbimpossible to assert that the “naive’ set theory,
or the intui&iﬁ“conception of what set theory should be, has
found a deﬁhitive axiomatic formulation. Apparently it 1s Godel's
preseng-jmpression that in a sujtable large and “free’” axiomatic
sy et “for set theory the continuum hypothesis is false. This
feeling, based on indications provided by results on projective
sets and the abstract theory of measure, has been shared by the
author for many years.

The weaker hypothesis: ¢ is less than the first inaccessible
aleph, suffices o0 establish certain resuits, e.g., in measure theory,

1
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valid under the asstmption of the continuum hypothesis. 1or
example, the nonexistence of a completely additive n e
vanishing for scts consisting of a single point and defined fur o2
subsets of the interval follows from this hypothesis {Ularn S,
It is the anthor’s feeling that, in “reasonable” systems of axiums
for set theory, even this weaker hypothesis may be false
Another, perhaps less well known, problemnt in the general theory
of sets is the following question of Suslin: Let C be a class of «-is
such that every two sets of this class are either disjoint opsse
one is contained in the other, Every subclass of ¢ consistigg \orly
of mutuvally disjoint sets is countable, as is every su.bgltas\s s1ich

There are many equivalent formulations an"ckséime interesting
Partial results, but the problem must be réfarded as unsolve:d
(cI. G. Birkhoff [L1, p. 47). The present ‘state of Suslin’s au.d
related problems is thys one more of many Prdications that abstruct
set theory is far from forming a compléte or “dead” field. On the

as one finds in Netto’s bodk (1] on combinatorics or MacMahon’s
treatise [1] so as to{Obtain nontrivial problems about infinitc
sets. Coming backte Suslin’s problem, one can formulate it
fequivalently in_&n abstract Boolean algebra or mere generally
in tt_arms of Ja¥ice operationg {cf. G. Birkhoft [173,
leficu{t'l)mblems arise already in rather sitaple commutative
Stl’thﬂ?QS}e.g., in the study of infinite (say countable) Boolean
glgeb{ak, the equivalent of the Propositional calculas, but especially
In .ghe' more general algebras in which projection Operators cor-

present’ever deeper questions which can be sti regarded as
toncerning pure set theory (Halmos [17}.

Going sti]l turther, one employs in set theory operations going
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bovond all the above, namely, a passage to variables of higher
tvpe, 1.c., the formation of classes of sets, classes of classes, ctc.,
s that it is possible to treat algebraically mathematical systems
ot still greater generality. One can formulate problems in naive
s:t theory dealing with properties of repeated passages to variables
of higher type, studied per se. We shall content ourselves in stating
e

A “super-class” K of objects is imagined which is closed with
respect to the operation of forming the class of all subsets. Starting,
say, with the set S, of integers, one forms the class of all subsefg)
o this set. This is a sct which we denote by Sy; the class ¢fyall
cubsets of S, will be denoted by S,, cte. In addition, the-elass K
is closed with respect to the following constructiens” it S,,
i =1,2, ... isany countable collection of classes of s”e‘,‘;\q belonging
o K, we form the class of all possible sequences] of sets s;e.5;;
we postulate that this class X of all such segilences {S;} also
- belongs to K. Imagine K is the sma]lest’cl.’zks closed under the
{wo operations. The question now arises ofclassifying the objects -
of K by means of transfinite ordinal§*and of determining the

powers of sets forming the elezrgerftﬁ" of K.
wagwt dbraulibrary.org.in

2. The oper.gztlfsn of direct product

One deals with the OI}}ation of the direct product, in a mwore
or less cxplicit forfd, “in every mathematical theory involving
more than one ;@iiable. Tt is used quite explicitly in fopology,
group theor wheasure theory, in the theory of metric spaces,
and it als,q%c“curs in one form or another in many algebraic
theories It seems, however, that a geneyal investigation of the
propest ids of this 'operation for its own sake, on a set theorctical
basgzr%las not been undertaken in spite of the many common
features, presented by problems of “many variables,”
in the various theories referred to.

The notion of phase space in mechanics is essentially that of
a product space. The state of a system of particles is represcnted
by a point in a product space, namely a dircct product of spaces

apparent
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valid under the assumption of the continuum hypothesis, Fu.
example, the monewistence of a completely additive measur:
vanishing for sets consisting of a single point and defined for @
subsets of the interval follows from this hypothesis (Ulam 17}
It is the author’s fceling that, in “reasonable” systems of axioms
{or set theory, cven this weaker hypothesis may be false.

Another, perhaps less well known, problem in the general theory-
of scts is the following question of Suslin: Let € be a class of sets
such that every two sets of this class are either disjoint or €ls-
one is contained in the other. Every subclass of ¢ consistipg enlv
of mutually disjoint sets is countable, as is every subelass“suck:
that for every pair of its sets onc contains the other. Is Cafountable
class? ~ h

There are many equivalent formulations andjégjme interesting
partial results, but the problem must be regarded as unsolved
{cf. G. Birkhoif [1], p. 47 }. The preseniisfate of Suslin’s and
related prablems is thus one more of many.indications that abstract
set theory is far from forming a complate or “dead” field. On the
contrary, the combinatorics of the tafitite, abounding in problems,
lead to a vast study which nowj‘sjeeins only in its beginnings and

1:3 Flot even systemati\galgdféﬁrﬁi é%ggd_(i)g ndeneral form. Indeed,
it is possible to generalize and reformulate many problems such
as one finds in Netto’s ook [1] on combinatorics or MacMahon's
treatise [1] so as o'\‘oﬁtain nontrivial problems about infinite
sets. Coming bagk to Suslin’s problem, one can formulate it
equivalently ip\dn abstract Boolean algebra or more generally
In terms of Jattice operations (cf. G. Birkhoff [1]y.

Difficultproblems arise already in rather simple commutative
structgrQ',“ €.g., in the study of infinite {say countable} Boolean
alge}?ljas, the equivalent of the propositional calculus, but especially
jll: the more general algebras in which Projection operators cor-

“responding to the logical quantifiers are introduced in addition
to Boolean operations (cf. Everett and Ulam [1]). Such algebras
present'ever deeper questions which can be still regarded as
concerning pure set theory (Halmas (.

Going still further, one cmploys in set theory operations going
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beyond all the above, namely, a passage to variables of higher
type, ie., the formation of classcs of sets, classes of classes, etc,,
¢; that it is possible to treat algebraically mathematical systems
of still greater generality. One can formulate problems in naive
sct theory dealing with properties of repeated passages to variables
of higher type, studied per se. We shall content ourselves in stating
one:

A “super-class’” K of objects is imagined which is closed with
respect to the operation of forming the class of all subsets. Starting,
say, with the set S, of integers, one forms the class of all stbsets
of this set, This is a sct which we denote by S;; the ths of all
subscts of S; will be denoted by S,, ete. In addition, zc’he class K
is closed with respect to the following constr{i‘@\tion: i 5,
i —= 1,2, ... is any countable collection of classgs‘of sets belonging
to K, we form the class of all possible sequghces of sets s, € 5;;
we postulate that this class X' of all such®sequences {S,} also
belongs to K. Imagine K is the smallést class closed under the
two operations. The question now aﬁsés of classifying the objects
of K by means of transfinite ordifials and of determining the

powers of sets forming the elements of K.
A \wrww.dbraulibrary org.in
N

2. The o&é&‘a}fon of direct product

One deals with {hé' operation of the direct product, in a more
or less explicit,§drm, in every mathematical theory involving
more than onefvariable. It is uscd quitc explicitly in topelogy,
group thj\i‘\()%: measure theory, in the theory of metric spaces,
and it 4186 occurs in one form or another in many algebraic
theor;feg’. Tt scems, howcver, that a gemeral investigation of the
pr&)e‘rtﬁics of this operation for its own sake, on a set theoretical
basis, has not been undertaken in spitc of the many common
fcatures, presented by problems of “many variables,”’ apparent
in the various theories referred to. '

The notion of phase space in mechanics is essentially that of
a product space. The state of a system of particles is represented
by a point in a product space, namely a direct product of spaces
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each describing the state of one particle. The component space:
themselves may be infinitely dimensional, as In quantum theory,
where the state of a single particle requires a function for its
description. In dealing with infinitely many particles, as in the
physics of continua, it is necessary to introduce a direct product
of an infinity of component spaces. A somewhat different type of
operation, the “symmetric product,” also arises in physics jn
connection with the IFermi-Dirac statistics, and requires a notis:
of the direct prodnct as a basic substructure. e\
But in the foundations of mathematics itself the direcf product.
enters implicitly in every theory involving the Iogicgl.}:iuantifier%
(the “thefe exists’ and “for all”’ expressions; iy the work of
Kuratowski and Tarski [1]). A mathematical intér}retation of the
existential quantifier is the operation of projestion of a sct, located
in a product space, on one of the compougnt spaces. The theory
of projective sets due to Suslin and Lusin 117, and Sierpifiski 2]
exhibits some of the difficulties of 'thfis'operation in problems of
point set theory, the sets being considered in a topological space.
It seems, however, that the r@eﬂ"causes of the difficulties in the
theory of projective setsHANEWHEIF ¥98# Already in general set-
theory including the gemeral theory of the operation of direct
product, rather than(il"the topology of the real line or the

Euclidean space ‘x’?h}r.e the projective sets were originally
defined. m\J

"The importaneé for mathematical logic of the study of the direct
product a’t&d}tﬁe contingent operations of projection in a purely
algebraio spirit is manifest. Just as the study of the algebraic
propgxties of Boolean algebras, their structure isomorphisms and
representations give a mathematical counterpart of the elementary
\Io‘gic of the calculus of propositions, the theory of such algebras,

widened to include the direct product and projection operators,
may provide a mathematical representation of logical systems
where quantifiers are admitted, and thus afford an adequate
algebraic structure for “constructive’ mathematical theorics.

We now formulate a few definitions and

problems concerning
the direct product of sets.
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3. Product-isomorphisms and some generalizations

The dircct product 4 X B of two sets 4 and B is the set of
A1t ordered pairs (g, b) with 2 in A and b in B. Analogously the
pesduct 14 18 the set of all sequences {ay, . - - S with a; in 4,
rhcaseall 4, =4dand i =1,...,% W chall write TE A, = A™

“wo subsets 4 and B of a product E? are said to be product-
~.omorphic in case there exists a one-one transformation f{z) on
7 to all of E such that the resulting transformation

, y) - (He), 1) O\
i F? 1o itself takes A into all of B. The rclation of prpd:ﬁct-'
:somorphism s reflexive, symmetric, and transitive, afidh ‘thus
titutes an equivalence relation on subsets of E* which divides
.we class of all such subsets into mutually disjoint{sibclasses of
wets, pmduct—isomorphic among themselves. <%

The first questions that arise in connecti {Jwith this relation
concern enumeration properties. 1 is obvioﬁ§hat sets of differcnt
cardinal numbers cannot be product-isomorphic.

What is the power of the equivalgiee class of all subsets of F?
product-isomorphic to a given ’stib’Set A of E? (in case E has,
ior example, the power ¢ of th‘%"%}ﬁ’rﬁ'?ﬁ?}ﬂiﬁ‘j@r Froygsiteral, it is 205
of course it cannot be grngtégs, since the power of the class of all
subscts of E2is 2°. In sp@iéﬂ cases it will be smaller; for example,
if A should consist @fyonly one point (a, @) on the “diagonal’”
of E?, then every, prd&uct—isomorphic set also consists of a single
point of this dja@énal, and the number of such sets is ¢. Moreover,
it 4 = E?, n A is product—isomorphjc only with itself.

A proslﬁ;':\f-isomorphism of a subset A with itself is called a
])rodimtimitomorphjsm‘ The number of product-automorphisms
Of\s‘z\ibset A of E2, different on A, is in general 2° when E has
power c; this is true, for example, when 4 = E2. Ome easily
constructs examples of sets 4 which have only a finite number of
product-automorphisms, in particular, some which admit only
the identity as such an antomorphism. Does there exist, for every
#, a sef having exactly = product—automorphisms?

Consider now the class K of equivalence classes of product-
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isomorphic subsets of £*, where # = 2 and product-isomorphisni
is defined in the obvious way by gencralization from the casc
n = 2. The power of K is 2* when the power ¢ of the set £ 15
mfinite, a result which follows from a theorem on the power
of nonisomorphic relation sets. What is the power of K when
E is finite?

Most .of the enumeration questions are difficult in such casess,
Specifically, what is the power of: (a) the class of subsets of A
product-isomorphic to a given one, (b) the class X of equivilefice
classes of product-isomorphic sets, (¢} the set of prodtic‘?—auto--
morphisms of a set with itself? Even good inequalitiés\on sucl,
powers should be of interest. Of course, the power©f (a) above
cannot exceed ¢! nor can the power of K be les§{than that of en,
but the “best possible” bounds may not be.easy to find.

The concept of product-isomorphism beasgh Interesting relation
to that of isomorphism for various\fnathematical structures.
Suppose that under an operation O, the”elements of an abstract
set £ form a group G. In the set E Seubsider the set @ of all points
(%, ¥, z) such that 20y = 2. “{g’rﬁ%y call @ the “representation’
of Gin E3. If H is also wgrogpradiinedionr ghe clements of E with

. Tepresentation §, then G afd'7{ are group isomorphic if and only
If their representationg ‘are product-isomorphic in E3,

The wide applicabﬁi‘ty of the notion of product-isomorphism
Is obvious since he-definition of isomorphism of mathcmatical
structures depeﬁﬁs only on the number and kind of operations
and not op~their special properties. Thus, if G is a partially
ordcred'g.s}\t\defined on the elements of an abstract set E by an
order relation (<), we may take as its representation & the
set, 6Dall pairs (z, y) in E2 for which 2 < ¥, and state that two
parfially ordered scts G, H over E are order-isomorphic if and
conly if their representations in E? are product-isomorphie,

A greater complexity of the system naturally demands higher
exponents # of the basic set E for its “representation.” Thus a
“‘ring isomorphism = product isomorphism” statement similar
to the one above for groups and relation sets obviously holds
when a “representation’’ is constructed m E® (the idea of a ring
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ving fwo binary operations). The question of the minimal
\sion # of the product space E® necessary to afford a precise
sentation G of a system G is a fundamental one. TFor cxample:
one “represent” a group already in G2, that is to say, attach
pifectively to cvery group of the same cardinal power as & a subset
i1 2%, 5o that the “representations” would be product-isomorphic
if und only if the groups are isomorphic in the usual sensc?
Topological systems may be characterized by reprcsentations
5 F®. Suppose, for example, that G is a Fréchet space defineda
4 set E, with g, =lima, defined for certain sequen,cés\i
‘i e s 1, 2,00} We may define the representation ® of GHin
.5 the set of all points {&,, @y, @a, - - .} where 2, = lim'ai,.’Two
Hrichet spaces G and H defined on E are homeomopp‘iqﬁ if and
only if their representations are product-isomorphic3ii the obvious
e, The extension of such procedures to combifiations of al-
venraic and analytic structures like topol 0gic§1‘gf0ups is manilest.
Ouestions - concerning the representatidns’ of mathematical
systems arise immediately. For example, suppose G is a group
defined on the unit interval £ = [0, 13 (All this means, of coursc,
is that G is a set of the power of thaRontinum.) 1 rellpresenta,tion

fuy o

i

AN a Y .OTE .
& is then a subset Z in the umif cube E*. Subgets goi'n E% can be
classified as follows: A segdence {4 Wb =123, of sets

in E is given; one consid}r sets B belonging to the Borel field
aver {4,}. {On the lipesthis sequence is usually taken as the se-
quence of ration@l:in\tervals.) The simplest sets in E® are sub-
products, i.e., seté;} of the form Z == By X By X By where By, B,
By are B-suhséﬁs“ of E. One can then consider sets which are com-
plements ojf}'these. All these will be called of “class 0.” The next
class }~~gf,\51lbsets would be countable sums of sets of class 0 and
their}:ofhplcments. Class 2: again sums of sets of class 1, also their
complements, and so on. We get an analogue of the Borel classifi-
cation for subsets of E3. One problem is of existence of algebraic
structures whose representation ® is of minimal Borel class «,
given—for amy choice of the sequence A, » =12 ... (For
example: Does there exist a group G of power of continuum, whose
representation @ would be of class a > 8, for any choice of a



3 A COLLECTION OF MATHEMATICAL PROBLEMS

countable sequence- of the “elementary” sets?).

Starting with a given sequence {4,} of the “elementary” scu:
in E one can ol course go beyond the Borel classification an+
define “projective sets”” in E? in a manner completely analogou=
to that of defining the familiar projective sets of Lusin.

The definition of product-isomorphism of two sets 4 and & i
II™ suggests a generalization which leads to interesting questictiy
about the abstract systems & and H. Let us say that the twa 501;
A and B are weakly product-isomorphic if there exist blu‘nlqur

transformations f;(x) on E to all of E such that theMnduced
transformation N

@+ 2a) = (Faler)s - o Fa S

maps 4 onto all of B. One may then defing.the weak isomorphism
of two abstract mathematical structuresﬁ{ and I on the elements
of £ as the weak product-isomorphismwof their representations
& and $ in I* Thus the weak isomor‘phism of two groups & and
H over E is tantamount to the'€Xistence of three biunique cor-
respondences z = u(a), y = b} z=mwi{c) on & to H such that
¢ == gb in G implics 'L w d%?)fl I{ 1Bran re%%ondmg elements in A.

A different generahm‘tton may be obtained by defining two

subsets 4 and B OK\E“ as (weakly) product-isomorphic under
decomposition 1n QOyse there exist decompositions

A= ‘Al +>1m) B= B ‘L I‘Bm; ‘/liAg‘:OzBiHj (3#”

such t I;éﬁ a,nd B, i- , m, are {weakly) product-isomor-
phic. leads naturduy to the concept of “‘the weak isomor-
phlS\l‘Il ‘of two structures G and H under decomposition” defined
m\terrns of the (weak) product-isomorphism of their representations
\@5 and § under decompesition. For example, are the groups S
{all permutations of the set of integers) and # (allhomeomorphisms
of the unit interval of real members) isomorphic under decom-
position?
Given a “representative”” set Z of an algebraic structure {over
a set of power ¢) one can ask whether it is Borelian or projective—
in the sense of definitions given in the last paragraph. These refer
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15 a given basic sequence of sets 4, in E. We call a sequence of
bastract sets 4, in a set E measurable if it is possible to define
for all sets S of the Borel field over {4,} a real-valued measure
fanction #(S) with the following properties:

1. m(E) =1, m(S) =10 if S consists of a single point.
2 m (3 S = S m(S;) it 505, = 0 for ¢ #£1.
-1 i=1 '

i1 the set Z is Borelian or projective with respect to a measurable
sequence 4, we call the given algebraic structure abstrachly-
Borelian or abstractly projective. by

Among the first problems that arise is that of exighence of a
aroup defined on a set of power ¢ whose represent‘é‘tf‘on would
not be Rorelian. More generally, for other algebrails structures—-
¢.g., lattices or rings— how far can. sets, closcgl;ﬁ)eier these opera-
tions, still exhibit a set-theoretical “pathology of their represen-
(ative set @& of m-tuples? O

The motivation behind the above definitions is to have provision '
for a connection between the pur@fy'*algebraic propertics on one
hand and the topological or “gwgvté%’lj glr%pe?ties on the other—
of structures which are givefiscom S AforAlRY 158 Hependent on
a given topology of the\ ,gwen group {or relation algebra, etc.).

4y, Géﬁeraiized praojective sets

Let 4, be,a\‘gliiss of subscts of a set E, the lattcr having the
power of :ek\ké“éontinuum. The projections on E of the sets of
Borel class over the “rectangles’” Ay X A, in E? constitute the
pro}eg&ﬁ{ré sets of class & = 1 over {A L Continuing inductively,
onindefines the projective sets of class k = 2, 3, ... OVeT A, The
problems of this section are based upon this definition (ci. Siet-
pinski [27).

Is it true that, for every countable sequence of sets A_in E,
there exists a countable sequence of scts B, such that the Borel
class over B, contains all projective sets Over A,°?

Does there exist a sequence of scts A, in E with the propertics:
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(a) the Boolean algcbra generated by the sets A, contains a
noncountable set of atoms, and (b} all projective sets over
are Gy, sets relative to the sets (4,3

Does therc exist a sequence of sets A, in E with the properties:
(a) the Borel class over A, contains sets of arbitrarily high
(Borel) class number, and (b) all projective sets over {4} are
Borel sets over the {4,}?

More specifically, it is true that, for every positive integerd®)
there exists a sequence of sets 4, with the property (a)',g‘f\the
preceding problem, and the property (b) all projective sets Gver
the 4, are sets of projective class %7 A

Given a sequence of sets A, in E, and a tra.nsfefrrﬁtion fon
E to E, we shall say that f is a Borel transformation relative to
{4,} in case the counter-image of every BoralMset over the A,
is again such a Borel set. Does the produgtisomorphism of two
Borel sets over the class of rectangles A L% A, in E imply their
product-issmorphism under a Borel transformation relative to 4 -

Given an arbitrary sequence of sets”4,, in E, does there exist
a one-to-one mapping of E into,@“aéuch that the Borel sets over
4, in E go into Borel waty-dhpiilibrapy grggin py conversely?

In the following problem “the term analytic has its classical
connotation. Can every.@halytic subset of the unit square be
obtained by Borel gpérations from “rectangles” 4 x B where
A, B are analytic su?)its of the unit interval?

The motivation Mor mvestigating the Borel operations and,
beyond it, the frbjective operations when one starts with a general
sequence ofsefts A, —instead of the usua] one which is the scquence
of ratio@“intervals or binary intervals—lies in the. following
_ possibﬂity. There might exist a sequence of sets such that the
- nuniber of its afoms is noncountable (Le., still “nontrivial”) and

yet'such that the projective class over this sequence is “simpler’’
than the “classical” projective class. For example, a sequence

for all sets of this projective class—this is impossible, according
to a result of Giédel, for the familiar Projective sets: Le, it is
free from contradiction in certain systems of axioms to assume
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that ihere cxist projective sets which are nonmeasurable in the
seise of Lebesgue. Even more generally, one can extend this result
to show that no completely additive measure s possible for all
proeciive sets (by a measure we understand a sct function with the
properties: (1) m(E) =1, m{p) =0 where E is the whole space,
() is a sct composcd of any single point).

(s 5] =]
24 in ( > {g) =Sm{d,) it d;-4,=0 for ¢ =£ 7.

=1 i=1 SO\

Paradoxically enough, it is conceivable that a measare fungtio:{’
Bl the above could exist, if one starts with a sufficientlyf’fgﬁlc v
sequence of sets A4, in a class of projective sets ‘@per”’ this
sequence. Possibly all such sets could have the Bair}\property,
tlist is cach set of the class would be of first ca&e‘gory—-or com-
AN

S 3

4a. Relations between products‘éf different orders

Consider an infinite set E and thevsets E, E™, n 7 m. In
cach of these we have a speciak ‘class of subscts, the “R-set”
subproducts, ie., sets of tRET Yotbirulb g ain . A, and
Ay x Ay > .. A4, respecjc;vgély where the A’s are arbitrary sub-
scts of E. Whatisa one—&ge"mapping of Em into E" such that the
R-sets in E* become g&ts of lowest possible Borcl class over the
R-sets in E™? Ii t,lm\péwer of the set E is greater than ¢ {of con-
tinuum) does thére exist such a mapping so that the R-setsin K*
g0 over into\l%}él sets over R-sets in E™?

In the aBove question the A’s are arbitrary subsets of E. An
analogous*problem cxists for the case where the sets A are re-
strie@d"to the Borel sets over a seqﬁence ofsets §,,7=1,2,..,
given once for all in E.

The same problem for E”, ET.

We mentioned before the “representations’ of various algebraic
structures through subsets of E* (the index % being = » -+ 1 for -
an “‘algebra’ involving a #-ary operation}, The question arises
whether such structures can be “represented”’ by sets in E®
with #e < # -+ 1 (cf. section 5} and still “effectively”” up to an 50~

piement of such?
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morphism; in particular, e.g., whether the groups requiring off-
hand a representation in E® can be effectively put in a onc-one
correspondence with subsets of E? in such'a way that isomorphic
groups would have product-isomorphic sets in E? attached to
them. Obviously the problem of existence of such a correspondence
is trivial if we do mnot require effeciiveness or constructiveness
one can, using the axiom of choice, map all groups, isomorphic
to each other into the same subset of E2 However, if onc reguives
that groups whose representation in E® is a Borel set\ itk
respect to a given sequence of sets in E1} corres,pond %0 sets in
E2 which are related to these sets in E® through ome™\Borelian”
mapping, the relation with the problems above l@eomcs obvions.

Questions of this sort are related in spirit.td\the recent result:
of Kolmogoroff [1], on the reduction of fL}QGfIOHS of »n variables
to superposition of functions of 2 variables, rcducmg transforma-
tions of E™ space into itsclf to superposition of transformations
of a space E* into itself, with n .

5. Projective algebras

Projective algebraa“’fﬁvhdﬂxﬁééﬁeﬁiﬁﬁ’ﬁdﬂ of Boolean algchbras,
and will permit, to a ccrtzun extent, an algebraic treatment of the
logical quantifiers, I@f our present purposcs it is sufficient to
consider a represchiation of a projective algebra and, for simplicity,
we shall resteief otrselves to the two-dimensional case, although
the problemdJormulated below are meaningful in #-dimensions,
i > 2, 3

Assdt}c"then that we have a class of sets situated in the Eucli-
dea.n ‘plane, closed under Boolean operations and under projection

~snt0 either axis, and containing the direct product A4 x B
vfhenex er 4 and B belong to the class and are situated on the X
and Y axes respectively. Such a class constitutes the simplest
example of a projective algebra (c¢f. Everett, Ulam [1]; Mac-
Kinsey {1).

Given a countable class of scts in the plane, does there exist a
fimite number of sets which generate a projective algebra containing
all sets of this countable class? Another statement might make
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e assertion for a countable class of sets given in E™ with the
voverating sets required to be in some E® with n < .

‘fhat this may be possible is shown by an example due to
s 1ivid Nelson in which two plane sets generate an infinite projec-
tive algebra. Note that the situation here is radically different
«m that of Boolean algebras, in which case one can obtain at
most 2% elements from 7 generating sets.

Dges there exist a wniversal countable proj ective algebra, 1.e.,
= eountable projective algebra such that every countable projective,

sigebra 18 isomorphic to some subalgebra of it? (\)

s it true that, for every positive integer k, there exmts\ a
rrojective algebra generated by B sets in the plane agél”i'».fhich
is frce in the sense that no relations exist between tl"l&génerated
sats except those that are true in every projective algebra? Can
svery projective algebra be obtained by a hngomorphism of a
trec projective algebra? SV

How many nonisomorphic projectivq‘z}lg’;ebras exist with %
generators? N

Many theorems in mathematics mount to stating that two
sets, ob‘tain.ed by diffe.rent be@wgﬁ,agglgoglegp ‘c‘)pcrations and
guantifications operating OTK& finite num?)@é of Biven sets are
identical. It is, thereforg, def{&\l’rable to establish in some projective
algebras a theorem toQt‘he\ effect that for two identical sets their
identity can always be Sstablished by the rules of formal projective
algebra. We atrct “asking in particular whether there exists 2
countable sequé:ncé of sets in E™ such that the projective algebra
generated them is free; that is to say. whenever two sets, coll-
structedjfrom the generators by formal operations of projective
algibfé‘\’ai.ré identical, then they may be demonstrated to be
so by formal projective—a]gebraic operations.

6. Generalized logic

The attempts to exhibit the nature of the essential difficulties
in the foundations of mathematical logic in purely algebraic
schemes have a long history. We will be concerned in this section

Q)
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with a type of problem which embodies some of the desireil
features of such a program, and at the same time seems to admt
less familiar models, among them, what might be described as
system with infinitely many quantifiers.

Omne of the most striking weaknesses of projective algebra, a-
one naturally conceives it in generalizations from the plane 1o
E®, n = 2, is its limitation to a number of quantifiers bounded in
advance. Ordinary logic, while it makes statements about ol
a finite number ol variables at a time, suffers no such rest’rjc‘gif_)m
Moreover, it is apparent that the postulation of # prqj?;‘."ctic_}r;
operators along different axes is cumbersome and unngg:.es?éary Iy:-
stead, we might postulate ome projection operator aerid’fﬁne trans-
formation of variables (say in E% 2’ =y, o' T.z,j\zs' = &). These
two together will generate all projection operators,

- Let us therefore define a more general gype of “‘projective al-
gebra” as a class R of subsets of a set. % “closed under Roolean
operations, and under two operators Pand 7 which we conceive of
as a “‘projection” operator on theglass of subsets to itself corre-
sponding to projection of é?l,;” a}log one “axis”’, and a one-to-one
point-{o-point transfé‘f"r‘ﬁ‘ﬁ’hqﬁ% %rym ;mcorresponding to the
permutation of the axes,/sespectively.

It seems possible to'fpﬁmﬂate a system of postulates in terms ol
such operators which,when applied to the special set E of all two-
way infinite sequehces (..., &y, %, 2, @y, . . .}, where z, are real
numbers, wowld{properly contain ordinary logic. However, the
possibilitiesypf-eatending the formalism and still using this special
set E, seef)to include a logic of propositions with infinitely many

~ variahlesy For an example of a statement involving infinitely many
quantifiers see the infinite games of Chapter I, Section 11.
“NFhe formal structure would be the following: A class R of
Xubsets of E is closed with respect to the Boolean operations and
the operators T and P. In addition, we can require countable
additivity in R.
Any such class could be considered as an infinitely dimensional

projective algebra. It is then a class of sets contained in E such
that: '



1. SET THEORY 15

{ If Zc R, then (E— Z) ¢ R:if ZeR and Z,¢ R, then
(7 + L)€ R.

2 1t ZeR, then T(Z) e R and P{Z)eR; it Zc K, then
ImHZYye R _

3. M Z,eRfore=1 2 ... then 3%, Z; e K.
1t is in this way, by using 3, that one will obtain sets defined by
.1 infinite class of “‘quantifier”’ operations or sets of an infinite
orojective class.

‘This could be of course achieved through a more orthodox

srocedure, using a finite number of quantifier operators ohlyD
i g q P P\

tut then we would have to operate with spaccs involving~ad-
Jiional variables. N

Perhaps the set-up above would have a grcatet{‘%tigebraic”
homogeneity. N4

The first problems would involve a represeatation theorem —
then the possibility of generating countablp, projective algebras
of the above type from a finite numbery wivets, etc. — similarly
to problems on the two—dimensionqup;rdiective algebras.

7. Some problemé"bu infinite sets
Wi dbraulibrary .org.in

1 Let A and B be infinite sets which admit a transfinite
sequence of point transformations £ (ayeB, aed, with the
properties: (1) £ (X tg\Y) 0 for Xc A, Y= A, and some
£ implies £, {X) {¥y= 0 for all 4 > & (@) for every infinite
cubset X — A theré exists a & such that #;(X) contains at least
two distinct peiiats; (3) X - Y = o for finite X, Y implies existence
of 7 suchthat #,(X)  #,(¥) =0

Is theéwpower of A necessarily less than or equal to that of B?

2+(Let C be a class of subsets of the interval (0, 1) with the
folxl‘mi*ing properties: (1 ) € contains the Borel sets (in the usual
sense); (2) C is closed under complementation and countable
unions; (3) For every decomposition of (0, 1) into disjoint sets,
cach containing at least two points, there exists a set in the class
¢ which has exactly one point in common with every set of the
decomposition.

Is the class C necessaxily the class of all subsets of (0, 1)?

Q)
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3. The power of the class of all additive subgroups of th i.:al
- field R is 2¢, namely the power of the class € of gl subsets o R,
Is the Borel class of sets over the sets which are arbitrary -
groups R identical with the whole class C? In the event «f a
negative answer, one may ask a similar question about the anaivtic
class (of all sets generated by analytic operations from sets which
are subgroups) or the kth projective class. That is, is every it
of real numbers obtainable by projective operations fromj eets
which are subgroups? For partial results see Erdss, Kakutani® i ..
8. Measure in abstract sets A O

It is known (cf. S. Ulam [1]) that no countably gdditi‘{«'e medasiie
function m(4) exists, defined for all subsets.q{t\\of a set £ of
power N, which vanishes for al] subsets consjshiflg of single poiris
and for which m(E) = 1. Does there exigh’a class of measii
functions, me(Ad), £in a set of lower‘p&(’rier than N, such ifai
every subset of £ is measurable in at'least one of these Measures?:
This is a problem of Erdsis and the author. Partial results hase
been obtained by Alaoglu andv Bt dos,

N

Let E denotc the set of &Egghslfggg;}pggigmb less than £, the firsi

] . W _ -
ordinal corresponding to asnoncountablo power. Thus E has the

power R,. Is jt possible?to define g countably additive measure
function such that a{iséts of the Borel field over the subsets of £
which form arithmetic progressions shall be measurable? (The
subelass of arithifaétic progressions form an analogue in this set
of the class p{bi’nary intervals for the set of real numbers), Similar
questiogl}xé,y be asked concerning the measure for (a) analytic
class oyer the set of arithmetical progressions in F, and (b)
Uprojective’” subsets of & (over the same class),
...\If“\a set I is of a power which is an inaccessible aleph &, does

ére exist g countably additive measure for all subsets of ¥ with
m(E) = 1 and mp) = 0 for all points p?

It is known that the results on the Impossibility of defining
a completely additive measure for all subsets of a set £ held
true for all sets whose POWeTS are accessible cardinals, It scems
rather likely that at any rate the existence of o two-valued measure,
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canntably additive and defined fof all subsets of a set of an
naccessible power does not contradict the axioms of set theory.
ideed, probably a stronger additivity for all N < 8 can be
shiained where 8 denotes the power of the first inaccessible
cordinal.

9. Nonmeasurable projective sets ~

(:6del has proved that the existence of projective scts which are
soameasurable in the sensc of Lebesgue does not contradict ihe)
axioms of set theory; that is to say, the statement that such.\sets
oxist is either true, within certain axioms of set thpoi*’j%, e.g.,
ihose of von Neumann, or is independent of these dXioms, It
would be interesting to prove that the existence'"a such sets
sollows from the continuum hypothesis. RN

Tn the sequel we shall sketch some possi Elines of attack on
this problem through the use of certafiii donstructions in the
nroduct space. Re ' :

Gadel’s result shows really more; G615 frec of contradiction in
such axiomatic treatments of set tf,i'éo}y to state that no countably
additive measure, vanishing gwié@tﬂtﬂ@nﬁiﬁfimgr_éhigansingle point,
is possible for all projectiv@sets.

A similar problem égu~be formulated about the existence
(assuming the contingbin ypothesis) of projective sets with other
“‘paradoxical”’ propériies, e.g., sets not satisfying the Baire
property (a setsatisfies this property if it or its complement is
on every intefyal a sum of countably many nowhere dense sets).

We sha,}i\mdicatc how, given an effective or constructive
decompg%iﬂon of the interval into N, sets each of Lebesgue
medsare 0, one can define constructively, ie., projectively, a
nenteasurable set consisting of a sum of the sets used in this
decomposition. A construction is given in the paper rcferred to
{Ulam [1]) which amounts, in essence, to the following:

One can construct a doubly infinite matrix whose elements are
subscts of a set of a power N, with the following propertics. Each
row of the matrix represents a decomposition of £ into X, disjoint
sets. There are countably many rows and noncountably many
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- columns. The sum of the sets'in cach column gives the whole set £
with the exception of, at most, countably many elements (which
would be the original sets each of measure 0). The sum of each
column, therefore, would be a set of measure 1. So in each row there
would exist at least one set of positive measure. This leads toa
contradiction because there arc only countably malry rows and
noncountably mauny columns, there would exist ‘at)least one row

_ with noncountably many sets, each of posipii{@ measure and all
disjoint, which is impossible. N

If we can, therefore, establish the cx&s{tence of a constructive
decomposition of the interval into W) ‘projective sets each of
measure 0, the construetion used jaM.c. would turn out, as we
shall prove, also projective and‘@pnmecasurable.

Here is a suggcestion of a POssible way to obtain such a decom-

position: O

Consider a set X of mg:éjs%ure 0 on the interval, and such that
under a Peano mappipgfff' of the interval into the square which

preserves r{lﬁfa.‘%réara i]iuﬁé_;%;i&%gg_grpeasure in the interval = area f:f
the image M tTjem quare and vice versa) its image is contained in
the set X2 Assdmieé furthermore that 7(X) is a proper subset of
th.e set X2, We\ ant to show the cxistence of a constructive set 5
still of megeure 0 and containing X as g proper subset,

Take T* {(X?), and define Xias X T-1(X?). Since T is measure-
pmsg\*x}?ng, T-4(X?) is of measure 0 and X-! is of measure 0 toc.
Consider now X 2. this set contains 7T(X 1)- More generally,
.,s,jqppgse th‘a,t sets X were defined for all & < and that X
..\1;\0002“31“9(1 (X,). Take X p a8 > X, for all «, then X? contains
\ )} Xa.ior'aﬂ o and, therefore, alsg T(Xa) for all «. 'I'al';e,sr T—l{st,).
This will be a set containing X, Let us call it X ;41 Proceeding

| btain a well-ordered scquence of sets
that are mcereasing and are all of measure

Un(.:ler the assumption that the power of continuum is that of
P at a transfinite ordinal of at most third

_ desired decomposition of the interval
Into a well-ordered sequence of projective sets ajl of measure 0.

€ | i i
We can use now _the construction described in the paper 11
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Fund. Math. Vol. 16, by using instead of points, the sets of our
sequence. The sets of our matrix would all be projective sets.
Af least one of these sets must be nonmeasurable. This proves
our theorem, the existence of a projective set not measurable in
the sense of Lebesgue.

Remark 1. This method really could prove more. For every
measure that is completely additive and such that there will »
exist a mapping of the interval into the square preserving the
measure in the square, and such that Fubini’s theorcm holds(fer)
the measure, there will exist sets that are projective and not
measurable in the sense of this measure. "4":'«.

REMARK 2. The same argument would yield the '\(ex}stence of
projective sets which do not possess the Baire property, ie., that
there exist projective sets which are not of firs yategory on any
perfect set, and their complements are not p&ﬁ%t category on any
perfect sct. 2N/

REMARK 3. One could possibly extcnd'stich a method to obtain
the existence of a projective set Whibh does not possess the A-
property of Lusin. www.dbifaulibrary org.in

All these resuits would be yalid under the assumption of the
continuum hypothesis. Presumably they would still hold under
the assumption of a w a?éeﬁ hypothesis, namely, that the power
of continuum is lesghthan that of the first inaccessible aleph
(greater than R, &

ProsLEM. Doesthere exist a two-valued measurc for all subsets
of a set Wl‘gsgfpower is the first inaccessible aleph?

We shall‘summarize again our approach to the question of
existengé of projective sets, nonmeasurable in the sense of Lebesgue,
and”will sketch an alternative approach to establish the lemma
on ﬁrojective” decompositions of the interval into R,, sets of
measure 0. The basic role is played by the theorem, mentioned
above:

T here does mot exist a completely additive measure Junction
defined for all subsets of a set Z of power W, which would assume
the value O for sets consisting of a single point and equal to 1 for
the whole set Z (cf. Ulam [1]).
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The proof depends on the existence of a decomposition of the
set Z into a doubly infinite matrix of sets (all subsets of Z) which
would apply equally well if the set Z was of the power of con-
tinuum, but could be decomposed into R, sets all of measure 0.
The proof of the nonexistence of measure is contructive if the
decomposition used in the paper quoted above could be assumed
constructive. ~

It would be interesting to strengthen Godel’s result b'proving
that the existence of projective nonLebesgue measurable sets
follows from the assumption-of the continuuml.ﬁypothesis or
even, the weaker hypothesis, namely, that the Iﬂj\i%ef of continuum
is less than that of the first inaccessible 8. &&t us note that it is
sufficient to show the existence of a decguipbsition of the interval
0,1 into N sets all of Lebesgue meaglire 0, where the N isa
cardinal number smaller than the #it3t inaccessible N, and the
decomposition would be construcfiye in the following sense: the
sum of a subsequence of the setsof the decomposition correspond-
ing to a constructive class_ofidrdinals is understood here in the
sense of, e.g., Kﬁfﬁﬂﬁ%ﬂbﬁf%T"a%'sm‘constructive". Given such a
decomposition, the construction given in the paper by Ulam [1]
yields a set which ig obtained by projective operations from the
given sets and, &‘-‘f v¢hown, would be nonmcasurable.

The crucial jpoint, therefore, is to show that one can decompose
the interva:l\’iflto, for example N, sets all of measure 0 and so that
the decg:u@pnsition itself would be “projective.” An approach to
such_a“genstruction, different from thec one above, could be as
follows:

Slet us start with the well-known decomposition of Lebesgue

(of the interval into N, disjoined sets of Borel sets and all having,

in addition, the property that if a number z belongs to a set
Ag, £ < 0, then any number of the form z + 7, where 7 is any
rational number, belongs also to A,. In virtue of this property,
the sets A, must all be of Lebesgue measure either 0 or 1. If all
were of measure 0 we would have the desired decomposition so
we can assume that one of these sets will have measure 1. The
operations which we shall perform on sets from now on will lead
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always to sets that are invariant with respect to addition of a
rational number so that these sets will also be of measure either
0 or 1 or else nonmeasurable. Since the sets will also be projective,
we may assume that they are all measurable, otherwise our result
would be already proved.

One needs the following general lemma:

Given a projective set that is uncountable, we shall attach to
it “‘projectively’” a proper subset of it. This will replace for our
purposes the necessity of using the axiom of choice which; (of
course, in gencral destroys the constructive character of tHe)set.
Let 7'(p) be a onc-to-one transformation of the interval dfto the
square. This 7°(p) can be chosen as Borchan transfofrpation, in
fact, one of second Borel class. Consider a set Z ceﬁﬁjned in the
interval. Consider the set Z2 and the set T(Z), ¥¥e may consider
the division of the unit square into the fgup'sets Z%, C x Z,
where CZ is the complement of Z to the“whole interval, (CZ)?
and CZ x Z. If T{Z) is not contained G any one of these sets,
then the countcr image of the twosparts of 7(Z) lying in two
different sets of this decorﬁ‘iﬂ’ﬁ‘%’i%%’fﬁaﬁﬁ'ﬁé"a decomposition
of Z into two nonvoid parts, which' proves our assertion that there
exists a projective proper subset of Z. Suppose then, that T(Z)
is wholly contained in gné\of the four sets mentioned above. We
may assume that if L (29 is a subset of Z* it does not contain
any points of the diagonal D of the square, because we could,
by subtracting thefsg points, obtain a proper subset of Z. Consider
the part of thesdiagonal that corresponds to the set Z. This part,
called Z, js\\Gontained in T(CZ) in virtue of the remark that
T{Z)y- 12 : 0. Consider, therefore, T-'(Z;). If this set has a
constx{ié;‘ciir_e proper subset we shall be able to define a constructive
prober‘ subset of the set Z itself, because of the existence of a
constructive mapping of Z into Z£;

We may assume that Z, is contained wholly in just one of the
nine sets into which the square is decomposed, by taking the
decomposition of the interval into Z, CZ — £, and Z; and multi-
plying it by itself which gives us the sets 22, (CZ — Z;)%, z:
and the six cross products of the three sets. Consider the set on
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the diagonal D corresponding to the set Z,, call it Z,. Any pro-
jective proper subset of Z, would give us immediately a projective
subset of Z which would prove our theorem, It suffices, therefore,
to find such a subset of Z,. We can repeat thc reasoning given
before, and we shall armrive at a set Z;. One can by transfinite
induction prolong this construction for any ordinal of the second
or third class. If we make the assumption that the gower of
continuum is only N, this chain of sets 7 must f,top, whlch gives
us a proper subset of the set Z given in the begmnmg Our lemma
is, therefore, proved. 3

Consider now for a given set Z its proper subsef which we shall
denote by U(Z) = Z'. Of the sets Z' and.Z* Z’, one and one
alone must have measure 1. We shali app]y to it the lemma and
obtain sets Z2 and its complement, Ip this fashion we can define
sets Z™ all of measure 1; that is to sa¥, ‘if they are measurable. The
intersection of these sets would hé\avset still of measure 1, because
of the additivity property ofthe measure function. Using our
lemma for this set, which wc Shall ca]l Z®, we shall obtain a set,
still of measuré 1, dfqu] YA Continue our construction by
transfinite induction remembenng, however, that the axiom of
choice is not used since we always select the proper subset ef-
fectively by taki the one which has measure 1. We can assume
that the intersCetion of ¥, of such sets is still a set of measure 1,
otherwise wéiwould have the desired decomposition into N, sets
of measured by using the complements of these sets. Therefore,
our ¢ n"‘tructlon can be prolonged to transfinite ordinals of class
three\ However, if we assume the continuum hypothesis, we
nqu.st arrive at a vacuous set for some ordinal of the third class.

\ “\Therefore, there must be a sequence of length i, of sets that
have measure 1 with a wvoid intersection which proves our
assertion,

We repeat that all the steps of our construction would be
effective, ie., the axiom of choice was not used, so the decom-
position of the interval into X, sets of measure 0 is projective, at
least in the wider sense of the word.
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10. Infinite games

The following combinatorial scheme was first proposed by
S. Mazur around 1928. Imagine a set of points M contained in the
unit interval (0, 1) and two indefatigable mathematicians 4 and
B who will play the following game. Each will define an interval
in turn, the first interval being given by A4, and each successive
interval being a subinterval of the preceding one but otherwisey
arbitrary. The game is won by 4 if the intersection of ail mtéﬁ'als
contains a point of M, otherwise by B. N

In case the set M is a residual set in some interval, t’he player
A can always win with the following strategy. The(s M having
a complement with respect to a certain mterva\ svliich is of first
category, 4 chooses this interval initially, and)regardless of the
choices of B, always selects, at his #th tush{a'subinterval disjoint
with the #th nowhere dense set which figores in the decomposition
of his opponent’s set into a sum of coufﬂ:‘ably many nowherc dense
sets. Obviously 4 wins! W dbf'auhblar org.in

It is interesting that, using the axiom of cl){mce one can construct
sets M such that for every subintcrval neither M nor M’ is of Ist
category with respect tg¢his subintcrval. These are sets which
do not have the so- callc%\property of Baire. Banach has proved
(unpublished) that for such a set M there exists no method of
winning for eithef player

One can genesalize and vary Mazur’s game in many directions.
The problemnoccurring in all such games involving a subset M
is: what_ 15 Sthe class of sets M for which no mecthod of winning
for ektlgcr pla.yer exists? It should be pointed out that, in all
knowh/games of this sort, a method of winning exists for either
A or B when the subset M is effectively defined. For example, for
the original game, up to the present no effectively constructed set
is known which does not possess Baire’s property. All known
proofs of the existence of such sets utilize the axiom of choice,

A result of Godel from which it follows that it is safe to assume, in
certain systems of axioms for set theory, that such sets exist and are
projective yields an interesting interpretation of Banach’s result !
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It is also interesting to note that games of this kind cannot
easily be defined betwecn three players without a trivial reduction
to a game between two of the three players. The dichotomy
inkerent in such infinite constructions is to be observed in all
constructive parts of set theory. Thus, for example, a Lebesgue
measurable set possesses at almost all of its points a densj{y which
is either zero or one. A Baire set is of 1st category or a complement
of such in all the points, etc. ¢\

The game first mentioned can also be speciafizéd in various
ways. Thus the choice of intervals open to™A4'and B can be
restricted by some rule. The simplest exam#le might be one such
that, given a set M, the players produce stictessive digits of a real
number # in binary expansion, player, d\Mrying to make 2 belong
to M, while B tries to make « belofig"to the complement of M.
An analogue of Banach’s resu}t“holds for these more special
games. Compare Gale, Stewart)>[17; Mycielski, Swierczkowski,
Zieba [1]; Mycielski, Zieba;.’{l]. Sec also the Scottish Book for
original Versio%‘ggf_lg[ﬁ%gﬁ.@ﬁy;gpéﬁﬁcations of Banach and Ulam.

An interesting variation of the latter situation would be provided
by allowing a random, element to enter: For a given subsequence
#, the play #, i3 t6.be 0 or 1 determined by chance. A method of
winning would b understood here as a strategy by means of
which 4 sueceéds in defining = in M for almost eVEry sequence
of 0's ap\d:l’s ou the plays #,

(N1, Situations in volving many quantifiers

X ~Ijt}s in statements on existence of a winning strategy that a use

,foé large number of quantifiers appears most natural, In games

Nt o

) between two persons they have, e.g., this form. For every move o,

(of the player A), there exists a move a, for player B so that for
CVery move a, there exists a move ¢z and so on so that after u,,
the situation is a win for B. ¥n a notation of Kuratowski-Tarski:
HEH...ZW(«I...%”)
Gy Hp oy Lon

where Wi{a, . . . a,,) i5a “Boolean expression’’ describing a winning
position.
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Thus a mate announced in 5 moves involves, in this notation,
10 quantifiers. This has to be compared with the usual mathe-
matical definitions, e.g., of uniform convergence, or the definition
of an almost periodic function, etc. These, granting already the
customary elementary mathematical notions and abbreviations,
get by with 3-5 quantifiers.

In a study of the formal properties of repeated applications of
quantifiers treated as mathematical operations {in the theory of
projective sets-0f Luzin — or in projective algebras — cf. Section
5) the number of times one employs these operators is arbifiary.
In the chapter on computing machines we shall mentioxg~f1;;e pos-
sibility of a heuristic investigation of combinatoridPyproblems
arising in this connection. ?)

12. Some problems of P. Erdés

Several problems pertain to the theory':c}f graphs. They have
equivalent formulations in our terminolegy of product operation
and can be stated as problgms on l_sﬂta(ﬁs;}%si_ ;{)fo 1gtgs%t E? through the
obvious correspondence of considenng pairs B points which are
joined by a segment. When one ‘tensiders vertices of triangles in a
graph, one can consider the €ortesponding set of triplets in E? etc.

Some other proble 5'\be’long to number theory but are of
combinatorial character and we include them in this section.

I. Let S bea ‘sgt’. of power R to each finite subset 4 of S
there correspor{c@,,an element f{A) of S and j{4)¢ 4. A subset
S, S is called indcpendent if for cvery 4 = S;, f{4)¢ 5,
Does the;q%:ﬁvays exist an infinitc independent subset of S7?
If S haspower N, this is false (a result of KErdiss-Hajnal) but it
ma,tbfe\’true for W,. _

2 \/A problem on infinitc graphs (Erdds-Rado}: Suppose an
infinite graph is given whose vertices form an ordered set of
type w?. If this graph does not contain a triangle, then its vertices
have a subset of type w?, no two vertices of which are connected by
an edge. This is denoted symbolically as follows: w? — [w?, 3)%
Specker (Comm. Help. 1957) showed that @ — (w®, 3)? is false
for n> 2. Does o — {w”, 3)% hold?
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2a. Lrdis-Rado: Let S be a set of power greater than ¢. All
the finite subsets of S arc divided into two classes (in an arbitrary
way). Docs there exist an infinitc subset S; < 5 so that for every
integer £ all subsets of 5, having % elements belong to the same
class (but the class can depend on £)? If the power of Sis <¢
this is not true (Erdss, Hajnal). )

3. Let g be a complete graph of power R,, g = g, +§2 + 2
and we assume that ¢ —g;, ¢ = 1, 2, 3, does not contain a com-
plete graph of power R,. Does there then exist g fridngle, each
edge of which is in a different ¢2? Another pl:@lglgm: Let g be a
complete graph of power R;, g =3, 4q,, ’17:5;_ & < £, so that
g — g, does not contain a complete graph Qf}sﬁwer N, 1<)
(such a decomposition is possible (ErdssslRado)). Does there exist
a complete subgraph g’ of g of po Veﬂl), each edge of which is
in a different 2%? x\

4. Erdds-Turan: Iet @, << a(x". . . be an infinite sequence of
integers. Denote by f(#) thq"nﬁrri'ber of solutions of » = q, + 4,
Assume that w&{_ﬁguf&g; af_’y}m'lgﬁh Then lim sup,_. f(#) = .
A still sharper conjectute is: let @, << ck%, 1 = k& < oo, then
lim sup,_, f{#) = o0

a. Erdﬁs~T11ra;g:"})enote by #.(») the maximum number of

integers not exceéeding » in a set which does not contain an arith-
metic progression of % terms. How large can 7,(x) be? re(n) < gn
would proyelvan der Wacrden's theorem according to which if
one splitdilie set of integers into two groups, at least one of them
cont@"s\"én arbitrarily long arithmetic progression. (The best
rcg,qi‘c\s so far are:
AN a(n) << enflog log #
\m‘:" ¥y > ul b logn
7y (%) s nlucﬂog log

Compare Roth [1] and references given there.)
6. Let f(n) = L+ I, chosen arbitrarily. Prove that to every ¢
there exists an m and a 4 so that

[
]

|
F 2 (dR) ‘ >

| k=1
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This conjecture bas connections with van der Wacrden’s theorem
{cf. Khinchin [2]). Also it would imply that if g(n) = + I,
g{#) multiplicative, then

lim sup,,_.,

= N

7. Let ay, @q, ..., 4, be # elements. A;, A,, ..., 4, are sets
formed of the a’s. Assume that no A, contains any 4;. Then
k = "C,s,. Thisis a thcorem of Sperner [1] Let now By, B2, . H,
be sets formed from the a’s so that no B is the union of any, tw’o
other B’s distinct from it, What is the maximum ¢ Quite pocssably
[ < ¢ *C,;, Erdés states that he cannot even prove that Ls= 9(27).

8. Let g, =1, 1 =k = n Consider all sums of Q‘:e form

Zskak where &, = + L \
7\

Lrdds proves (sharpemnrr a previous result\of Littlewood and
Qfford), using the above result of cSperné]: that the number of
these sums falling in the interior of af interval of Iength 2 is
= *C,r9; equality for g, = ]W\imt?razﬂlhraﬂﬂlm‘gon]ecturc is that
the same holds if the a's are complex numbers of absolute value
= 1 and the interval is repldCed by a circle of radius 1. The
same result may even hold if the a's are vectors in a Hilbert
{Banach) space. \\

9. Let ay << dp <. Y < a, =0 b<by< ... <bh=n be
two sequences of:ifltcgers such that all the products ;- 9b;,
T=i=<k 1 g,@_g {, are different. Prove that

\%“' k-1 < ¢ (n¥log n).
I true thls is the best possible result.
10 ”‘]‘f{ow many distinct residues @, @, . .., @, can one give
(mod %} so that none of the 2¥ — 1 sums a; +a; + ... + a,,

should be = 0 (mod $)? Clearly one cangive [4/(2p) ] suchresidues
(a; =i, 1 =i = [+/(2p)]). No decent upper bound is known.

11. (Erdéss and the writer). Let J be any finitely additive ideal
in the set of all integers. Consider the Boolcan algebra of subsets of
integers mod I. Does one obtain 2¢ nonisomorphic Boolean alge-
bras in this way? '

Q"



CHAPTER II

Algebraic Problems

¢\
1. An inductive lemma in compinatorial ana!ysis\'\ >

We shall illustrate this lemma first on structures with(a given
binary relation. Suppose that in two sets 4 and b;\e'ach of »
elements, there is defined a distance function p for'every pair of
distinct points, with values cither 1 or 2, and p( $) = 0. Assume
that for every subset of # — 1 points of 4, ther€ €Xists an isometric
system of # -- 1 points of B, and that the number of distinct
subsets isometric to any given subset of - 1 points is the same
in Aasin 7. Are A and B 1som'%:rlc'r‘l b as,gcltlon is true for
% = 6, as has been shown by P. Kclly [1; by cxamination of all
possible cases. .

Clearly the metric fomm{atlon is equivalent to a similar
question about scts Wltk\ bmary rclation $ Ry, holding if and
only if p{p, q) = ()an one infer the relational isomorphism
of A and B from ?§ 2™ level relational isomorphisms of subsets
in the manner inic’ated?

Similar proble ‘rils may be formulated in other algebraic systems.
Specifically,&uppose that G and H are groups of order #. We shall
say two, subsets G, < G, H, < H of k elements each arc condi-
UOHKY\ 1somorph1c if there exists a one-to-one mapping f on

#,, such that whenever a, b and ¢ =ab are in G, then
;(c) == f(a) - f(b}). What is the minimum number k() such that
the conditional isomorphism of every G, to some H, implies the
isomorphism of G and H? One might include the strenger hypothesis
that if {G,} is any class of / distinct subsets G, conditionally
isomorphic to each other, then there are also { distinct suzbsets
H, of H, each conditionally isomorphic-to the G, sets.

29



2

30 A COLLECTION OF MATHEMATICAL PROBLEMS

2. A problem on maftrices arising in the theory of automata

The theory of automata leads to some interesting questions
which in the simplest case reduce to matrix theory formulations.
Supposc one has an infinite regular system of lattice points in
L™, each capable of existing in various states S,,..., S,. Each
lattice point has a well defined system of s neighbars, and it is
assumed that the state of each point at time ¢ 4 IMs uniquely
determined by the states of all its neighbors at, \tﬁnE ¢. Assuming
that at time ¢ only a finite set of points are ‘active, one wants
to know how the activation will spread. l.ﬁ"iﬁarticular, do there
exist “universal” systems which are capable of generating ar-
bitrary systems of states. Do thercieXist subsystems which are
able to “reproduce,” ie., to product‘other subsystems like the
initial ones? In a simple case, oge\’would ask: Does there exist an
infinite matrix 4 ={a,] of zaths and ones with >4 << B for all
rows 7, such that every possible finite matrix of zeros and ones will
appear as a main—diagogarl:'éubmatrix of some power AP of 47
A positive resylt sresldipreyislg ansimple cxample of a “universal”
and “reproducing”,.system (in a very limited sense only).

Morc generally{an analogous question may be asked about
matrices Whoir'}‘efements are integers modulo .

A similar Juqiiry is pertinent in case of the “‘recursive functions.’”
Can ong ‘o\b’tain all recursive functions by a prescribed algorithm
operatingron a finite set of such functions? More generally, are all
expressions in Godel's system obtainable from a finite system of
sueh “expressions and a finite number of rules of composition

Aperformed in a prescribed order? That is to say, for example,
'\

) application of two operations, applied in turn in an order given

by one sequence of two symbols,
Perhaps there exists a logical analogue of our universal matrix
model.

3. A fundamental transformation in the “theory of equations”

The transformation
Ty 2 = ~oyfz, ... 2 )

’

&y = (_l)n Jﬂ(mly LY xn);
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where o; is the jth elementary symmetric function, gives the
coefficients @, of the equation

2zl =0

in terms of the roots x;. The inverse T, of the transformation
T, “solves’” the equation of n-th degree. This transformation
can be considered operating on the n-dimensional real or on the
n-dimensional complex space.

Many of the statements about algebraic equations are tran&“
latable into thc elementary propertics of this mapping. TJ:ms
Gauss’ theorem on the existence of roots is simply the statement
that 7, is a mapping {many-one} on E* to all of E», wh fek is the
complex plane. The points “‘constructable by ruler-angd compass”
are related to those resulting from iteration of tl{c inverse trans-
formation 73;* where » = 2.

However, the topological nature of this tra.n\formatlon does not
scem to have been very thoroughly mvestlgatcd Tor exampile,
what are the nontrivial fixed pomts % 5 T (;5 )? The origin is al-
W, ays a fixed point, but there"ate gﬂ’x BV, P8, — 2) when
# == 2. What are the invariant anal'ytic manlfolds M =1 (M)?
What points are periodic nndex"7,?

The impossibility of sol 1.Qg the general equation of degrec n = 5
“by radicals’”” mecans that the corresponding 7" is not a transfor-
mation involving only field operations and extraction of roots.

Does there, how eifer exist a homcomorphism H of E* such
that the 1nverse~0f S = H1T, H would involve only such opera-
tions? s \J

The solutmn of the equation of fifth degree may be made to
depend«on elliptic functions {Hermite) and such methods were
gener&hzed by Poincaré. Can one show that for any » = 6 the
transformation 73! can be obtained by composition of such
transformations T;l of lower degree s operating on suitable
subspaces of E™?

Can one show that T, itself is a composite of a finite number of
mappings, each of which is a conjugate HT,, H™* of some 1,
m < #, operating on a suitable subspace of E*?
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4. A problem on Peano mappings

Let R be the set of positive rational integers with the usual
operations @ + & = s{a, ) and a - & = m(a, &). Every one-to-onc
{Peano) mapping ¢ = $(a, &) on K X R to all of R may serve
so associate with s{«, ) and m{a, &) two functions ¢ and x on R
to R by the definitions ofc) = o(p(a, b)) = s(a, &), and ule} =
u(pla, b)) = m(a, b). Does there exist a Peano mapping p{a, )
such that “addition commutcs with multiplicatiopd in the sense
that o{u(c)) =p(a(c)) for all ¢ of R? Toillustrate,Wénote that the
well-known Peano mapping ¢ = p(a, &) == 2¢3 (2b—1) fails. For,
a(u(14)) = o(pn(22 - [2.4—1])) = o(8) =H(M1. [2.1—-1]) =5,
while p(o(14))= u(0{2273- [2.4—17)) = w(6) S u (221 [2.2—1]) =4,
5. The determination of a matliematical structure from a

given set of endemorphisms

One of the fundamental taks"of abstract algebra is the deter-
mination of the automorphisms or homomorphisms into itself
(endomorplitsisy b briv-ens Mgebraic structure. The inverse
problem, though not<as familiar, presents many features of in-
terest (cf. Everetpf Ulam [4]).

Suppose that(Wwe arc given the operation of ordinary multi-
plication on the rational integers R =0, 4- 1, £+ 2,.... What
are all the possible operations of “addition’ definable on the set
R whichywith the given multiplication, will yicld a ring? It is
casy, (c:c}s”how that the characteristic of such a ring must be 0 or 3.

JLess specifically, what are all possible rings with identity,
countably many primes, and unique factorization up to units?

NS " Given the class of homeomorphisms of a topological space, what

other topologies exist on the same set which have these mappings
as the class of all their homeomorphisms?

6. A problem on continued fra-ctions

ApparenFly the explicit form of the simple continued fraction
fsorrespondmg to a real algebraic number of degree exceeding two
is not known in any individual case. The following special questions
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may, however, be more traciable. Does there exist an algebraic
number of degree >> 2 in whose continued fraction #; + 1/n, +
+- Ifng -+ . . . the sequence #, is not bounded? {Consider in partic-
ular the number & defined by § = 1/(§ 4 g} wherey = 1f{1 -+ #).)
Or is it perhaps true that every real algebraic number of degree
> 2 has an unbounded scquence {x,} for its continued fraction?
(The set of real numbers for which the sequence {#;} is bounded
has, as is well known, measure zero (and is of first category), so
that one might say that the a priori chance of a number x haviag,
the sequence {n;} unbounded is 1.) N\

N

)
™
S D

7. Some questions about groups o\('

Is every separable continuous group, considetad Solely as an
abstract group, isemorphic to a subgroup of 'thégroup Seo 0f all
permutations of the integers? It is obvious that’S,, is “‘universal”
for all couwntable groups in this sense (that is: every countable
group is isomorphic to a subgroup of it); but one can also show
that seme groups of power cYﬁKe%]iEé"l*f&a’iﬁ\l?ﬁgg'fbup R of real
numbers is isomorphic to a subgfoup of S,,. The proof is based
on the fact that R is a ratiéhal vector space with a {Hamel)
basis having the power of,thé continuum, and that S contains
a free product of cogtiilum many groups isomorphic to the
rational numbers undér» addition.

Let G be a subgroup of S, with the property that for every
two sets of integers of the same power whose complements are
also ¢f the s ‘sﬁe'power, there exists a permutation g of & which
transforms ‘one set into the other. Is G = S, (Chevalley, von
Neumant, ‘et al.)?

1f 'i€ the symmetric group S, on # integers two pairs of elements
a, b and «, S are simultaneously conjugate, ie., there exists an
element # of S, such that & = z'gx and § = x bz, then obviously
every element generated by @ and & 1s conjugate to the cor-
responding element generated by « and 8. Is the converse true?
That is, if every combination of 4 and b is conjugate to the
corresponding combination of « and § (through perhaps a variable
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« depending on this combination) are then 4, & simultaneously
conjugate to «, §?

The following question is due to H. Aucrbach. Let G be a groap
of # X n matrices g such that every cyclic subgroup of G:
Loog 2 gl e g, g% ... is bounded. Is G bounded? The answer
is affirmative for #» = 2.

We shall raise here a question on some purcly groug-theoretic
properties of certain important infinitely-dimensional\continaous
groups. Later in the discussion of topological groups we shall
refer to the simplicity of the group of all homegimorphisms of the
circumference of the circle — a result of~Ji*Schreier and the
author [2] — to thc corresponding result pf’yon Neumann and the
author on the group of all homeomorph’jg,\ns of the surface of the
sphere and to the recent results of\‘Anderson. This question,
whether the group under considetation possesses no invariant
subgroups (except the identity}lement) is of interest for the
groups of isometric transfor;ﬁé,tions of Banach spaces onto them-
selves. o

Is the gf‘“é‘ﬁ‘fﬂ‘%}f"iﬂﬁif}ﬁ’éé'sﬁr Breserving transformations of the
interval (0, 1) a simple group?

Does there exim*t‘“a universal constant ¢ (independent of dimen-
sion) such that,{dr every irreducible group G of orthogonal # X #
matrices g, ﬁ%e e is a vector # of unit length, some # of whose
images gl\.u’, . ., Ent under G have separation ¢ from each other,
ie., O

\"\ lgivw —gul =c, 14,4, 7=1,...,n
A

<Fhis constant could be greater than 3. In fact, the group of
*) “rotations of a pentagon in the plane very likely has the minimum

value of ¢.

The affirmative statement, if true, could serve as an important
lemma in a geometric approach to Hilbert’s problem [1] on the
introduction of analytic parameters in a continuous group, recently
solved by Gleason and Montgomery, cf. Montgomery [1].
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8. Semi-groups

Let G be a semi-group (associative multiplicative system with
identity), A semi-group H of G is mormal if it has the property
that, whenever % = Jgho8s . . . Bgphiny,. With B, By, ..., By, in
Handg),....g.n G, theng=gp,... g, isin . If{ Gand H
are groups, normality of  in this sense coincides with the usual
definition. Two elements 4 and b of G are said to be congruent
mod H (for H normal) if there exist elements ay, ..., a,, by, .. ., 5
in G and Ay, ...k, By,..., h in H such that ¢ = q,. 'a.\
b=25b,...b, and hay, ..., Ha, = kb, ..., b, Th.lS _Again
coincides with the usual congruence in the group case. ¥ would
be of great interest to establish the analogues of the classical
chain theorems culminating in the Jordan-Holder'theorem, We
mention the following statements, some of WhlcQ thay be proved
easily. L6

The group S, of all one-to-one transfostations of the integers
(permutatmns) is not a normal scml-group of the semi-group of

: the set of all transformatigusdet: gz}lebmtggﬁrg ipto themselves,
Wthe S,. #s a normal subsemi- -group “of T,, the latter referring
to the correspondmg set of operators on the set of integers
L...,n In T, the semi-gro’g‘p F consisting of all mappings f{»)
such that iin) # n for %y ‘a finite number of integers # is a
normal subsemi-grouphIf*N is a normal subsemi-group of T,
which contains an element not in F, then N =T.

The homeomorphisms of the line form a normal subsemi-
group of the semfi‘group of all continuous functions.

".,"\ 8a. Topological semi-groups

Probléims of A. D. Wallace:

Leébh S be a compact, connected semi-group.

1. If S is finite dimensional, homogeneous and has a unit,
is S a group? (Yes, if dim S = 1.)

2. If S has a zero and a unit, does S have the fixed point
property?

3. If S has a zero and if 52 =S, can S be homeomorphic
with an s-sphere? (No, if dim S = L.}
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9. A problem in the game of bridge

Many of the problems of combinaterial analysis, especially
those of the theory of probability, derive from sitnations arising
in various games of chance or even games of “skill”’. The majority
of such problems refer to given or fixed situations. We give here
an example of a problem in the game of bridge involving, so to
say, one more existensional quantifier than the usugl, problems
of the game.

Does there exist an initial distribution of ha{lds with the fol-
lowing properties? (a) East and West can ¢nake, against best
defense, a grand slam (all 13 tricks) in every suit if this suit were
trumps. (b) In a no trump contract, Kowever, against a good
defense, East and West are unable €aNmake evenr a small slam.

More specifically, what is the gredfest number of tricks that
East and West can always :cnake;\x ‘even against the best defense,
assuming property (a)? It seéwis almost certain, that a hand
dlstnbutzon with the prop@rty (a.) guarantees at least 5 tricks in

“no trumps.;,{Jdichnties pudgtie author have found an example
of a distribution with, tlie property (a) such that a grand slam in
“no trumps’’ cannet “Be made.)

N\
10, A problem on arithmetic functions

The set of ~mteger valued arithmetic functions a (1), #=1,2,3,.
forms a, c{omam of integrity under ordinary addition, and Il'llﬂtb
phcat]&kn,

\:\‘ 4p(n) = 3 «(d)p(n/d).

& afn
% Is this ring a unigue-factorization domain? (E. D. Cashwel],
> J. Everett, who have proved unique-factorization in case of

tunctions «(%) on integers to a freld.)



CHAPTER III

Metric Spaces

1. Invariant properties of trajectories observed from
moving coordinate systems PR \)

Suppose that we have, given in a fixed cartesian coordmate
systema (%, y, 2}, # moving points describing given curves, x, L (),
y.(8), z,80), £ =1,2,..., % Suppme now that we ha\xe another
cartesian coordinate systern z', ¢, 2, which is in metion relative
to the given system. The given curves will a.ppe}ar differently in
the moving system. The motion of the sccond. ‘s,ystem with respect
to the first one is a general rigid motion, that is to say, the origin
of the coordinates moves on an bltf% rgl curve, and the rotation

W WL IaU or
of the system &', %', 2 with respect to 2, y, §IS quite arbitrary
as a function of time. A\

The question arises: what dxe ‘the invariants of the given
system of trajectories in re{spkct to the arbitrarily moving ob-
server? It is clear that for\ﬁ}st one trajectory nothing can be said.
In a suitably moving &ystem, this trajectory will appear as a
stationary point. If\suffices to put the origin of the coordinate
system onto the\ﬁ)@vmg point. For two given trajectories it is
clear that we ean’ move the system ', ¥, " in such a way that,
for exampley! {Ghe of the points will appear to be stationary, say,
again the orlgm, while the second point is moving on a straight
line, €ay} the x-axis. Likewise, for three points, the invariants
with respect to arbitrarily moving coordinate systems are trivial.
It is clear that the invariants are functions of the mutual distances.
between the moving points at any given time.

If, however, m = 4, some more interesting questions begin to
arise. For example, given arbitrary continuous motions of four
points, can one move the system of coordinates in such a way

37
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that fo an observer of this moving system, the given trajectories
will all appear as convex plane curves or perhaps as conics? If we
have a sufficient number % of moving points whose trajectories are
enlaced, is it true that in any moving coordinate system at least
some two of them will appear enlaced?

Analogous questions of invariants of systems of ~trajectories
{or, for that matter, more general parametrically represented
surfaces, etc.) could be studied for a given qla\‘s§~hf topological
transformations of space, more general than the rigid motions of the

y s..‘.

coordinate systern, R
0
2. Problems on copyex bodies

p §

(Mazur}: In the three-dimen 'én\ai, Euclidean space there is
given a convex surface W andwdpoint in its interior. Consider the
set V' of all points P defined by: the length of the interval QP is
equal to the area of the, piéﬁe section of W through O and per-
P endicu_lar t\? w%ﬁhrgah'gll‘g;‘?%H‘J{nconvex ?

A solid S of uniform deénsity p has the property that it will
float in equilibriugs (without turning) in water in every given
orientation. I\gg‘ts be a sphere? (In a two-dimensional version
of this problem, H. Auerbach [1] found shapes other than the
circle “dt}};the desired property.) In the limit (p — 0) one obtains
the following problem: If a body rests in equilibrium in every
positigf on a flat horizontal surface, is it a sphere?

Ast"C be a star-shaped closed plane curve, ie, a polar curve

given by p = p(#), and suppose that p(@) has a continuous

d ;\’derivative except possibly at a finite number of peints. Tt can be

\ 3

shown that there exists a constant % > 0 such that the curve
given by p=p(f) + % is convex. An analogous remark applies
to surfaces in #-dimensions. Suppose C is a curve (8(5), ¢() in
three-space contained in the surface S of a star-shaped region
including the origin. Under what conditions is it true that the
surface S can be expanded by adding a constant to each radius
so- that the curve which results from the given curve can be
obtained as an intersection of convex surfaces?
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3. Some problems on isometry

If 4 and B are metric spaces, then 4% and B? may also be
regarded as metric spaces, the metric of a product space A®? being
defined, for example, by

P((ﬂp @y), {(as, ag)) = [p*(ay. a5) + p*las, “4”%-

Does isometry of 42 and B? imply that of A and B? By an isometry \
between two metric spaces is meant a bi-unique transformation
of one space onto all of the other which preserves all distagees.
A similar question may be asked for other metrizations, of the
product space — instead of the “Euclidean’ formula a\bove one
may use the formula: ,w,\

P((“p ay), (s, @4)) = IdXx [P(“l’ “3}’\0‘(‘32} “4)]

or another “Minkowski” gauge function, Tﬁls is a metric version
of problems concerning the “extractiofi of the square root’”
algebraic structures, e.g., if the g‘rouq;?&fl2 and B? are assumed to
be isomorphic, does it ioﬂw%ﬁhtwﬂ%‘mmnpﬁc to B? (Ci.
Fox [1].) N\

Is Hilbert space characterizéd metncally among Banach spaces
by the fact that its group“o}‘ isometries is {ramsitive on the unit
sphere (Mazur)? '

K \ 4. Systems of vectors

Let 7y, \:F’,, be a system of # vectors in k-dimensional
space. We &re interested here in “bound’ vectors, that is to say,
a vecton, Yois defined by an ordered pair of points (4, B} in E*.
We/ailow three types of operations on vectors, namely, (a)
repNement of a vector V = (4, B) by a vector V' = (4", B')
obtained from it by a translation T along the line through 4, B,
ie, A" = T'(4), B’ = T{B); (b) replacement of a pair of vectors
V= (4, B) and V' = (4, B") with common origin by their
sum V' = (4, B — A + B’ — A4); {c) the inverse operation to
(b), i.e., the splitting of a vector V into any two vectors with
the same origin as V' whosc sum is V. Any two systems of vectors
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obtainablc one from the other by a finite number of such operations
are said to be equivalent.

It has been shown that, if ¢, is an arbitrary A-simplex in EF,
every [inite system of vectors is equivalent to a set of at most
% + 1 vectors lying on the edges of o, and the latter system is
uniquely determined by the original one. (A result of L\W. Cohen
[1] and the author}.

It would be interesting to prove an analogous rep}esentation for
arbitrary countable systems of vectors in Hilbert space, allowing
countably many operations and infinite/$@mmations in (b

and ({c). AD
() M\\

3. Other problems oh}metrics

Characterize subsets of the plane}éﬁ'ch that the distance between
any two of their points has aM@tional value. (Can such a set be
dcnse?) « \J

A problem is mentiopgaa’" clsewhcre in this collection on in-
'troducing a metric 11?11&}}1‘%%5%%%1 algebraic structure (c.g., group)
in such a way that the gréup operations would be continuous in
the metric and 1:}@ topology resulting from the introduction of
such a metri¢ aobld be of a specified type. We shall raise here
the vague qlh\s‘tion: given a metric space, can one introduce
a metric imM/which would lead to the given topology, the metric
being the“most natural one” among all metrics giving this
topglg@’. One can try to formulate precise questions which would
aj;?\smpt to define concretely some aspects of the phrase “most

'rh’a.tura.l_.” For example, given a topological space, can one find

- @ metric in it so that the group of all isometric transformations
N,/ under this metric would be maximal in the following sense:
for no other metric (leading to the same topology) would the
group of isometries contain this group as a proper subgroup’?

In particular, is the Euclidean metric defined on the surface of

the @-dimensiona,l sphere maximal in this sense? The samec
question for the Hilbert space sphere in the usual metric.
va:ously, in general, a topological space will possess many
different maximal metrics in the above sense. One could perhaps
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consider a metric iniroduced in a topological space as stable if
transformations which are “almost isometric” must, of necessity,
be near to strictly isometric transformations (cf. Chapter VI,
Section 1). The question is now for which topological spaces
can one introduce stable metrics in the above sense? One ob-
viously would want such metrics to be also maximal. Without
that requircment, the problem would not have much sense since,
in general, one can find metrics for which only the identity would

be the isometric transformation. Lo N

Tt is not without interest to comsider, in certain algebpdic
structures, an introduction of metrics such that the algebraic
automorphisms would be isometric transformations, buzi;we’ shail
not go into this subject. AL
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CHAPTER IV
Topological Spaces

i. A problem on measure

Let I be a compact metric space. Does there exist a finitely
additive measure m(A4) defined for at least all the Borel subée\t”s
4 of E, such that m(E) = 1, m({p) = 0 for all points $ of Z,
and such that congruent sefs have equal measures{Banach-
Ulam)? LV

Two sets A and B are called congruent if there exists an isometry
between A and B alone, not necessarily a conguilence under an
isometry of the whole space E taking 4 into B™(If one postulates
this latter more restricted notion of congrueénee, then such ameasure
is known to exist.) It is also clear that,the term “finitely’” cannot
be replaced by “countably”” for, @mﬁﬁhmaa‘giygl?mtion. {Consider
the set of points (x, ) in the planewhere 0 = y = L2 = 0, 1/n;
n=1, 2, 3,....) )

AN

) 3

2. Appro.:an'matt'%({ér\i ‘of homeomorphisms of E*

Let E2 be the Euglidean plane and & the group of biunique,
bicontinuous transformations of E? to E? generated by the sct
of all such co.r"r\égpbndences of the form:

X}{ ‘= Hz 9) - {x’zx
ol =y y' =g, yh

An»aﬂi;\rti"a.ry homeomorphism can be approximated, arbitrarily
c]osay /(uniformly in every bounded part of the plane} by trans-
formations belonging to G (cf. Eggleston [1]). '

Similar q'uestions may be posed for Euclidean n-space in various
ways depending on the typc of generators allowed for the group G.
For example, in three dimensions we may permit generators of
the form X: @ = f(z, ¥, 2), ¥ = ¥, 2 = z and its two analogues,
or again, let G be generated by all homeogmorphisms of the type

43 '
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' = fly, 2), ¥ =gz, z), 2 = k{z, y). The question still open is:
Are arbitrary homeomorphisms of £* approximable by transfor-
mations of the above type?

The possibility of such approximations for the general casc of
E™ would be of considerable importance for topology, providing
an inductive procedure for proving various topological theorems;
for example, the famous conjecture of Alexander f] on the
approximability of arbitrary homeomorphisms by, differentiable
mappings, which in turn implics the possibility\'(}f“.\triangulation
of any topological manifold. The basic lemua’ here would be
the Alexander conjecture for the plane (pfi:fVed by N. Wiener
and P. Franklin). Quite recently Moise{[1]) proved that three-
dimensional homeomorphisms are approximable by simplicial
homcomorphisms. RN

The problem of this section, & for » — 2, ie., E2, is open
for the case where I is a more guéral topological space. Moreover,
in the formulation as it stands;- X, Y, etc., need not be restricted
to homeomorphisms, and_the’ approximability is of interest when
the class of YRR IFSAHMNINSTE Widencd to include general, con-
tinuous, or even, say,“Borelian mappings,

It would be injcp’(esting to attempt to utilize the recent results
of Kolmogorolggl.] ‘and Arnold [1] on representation of functions of
any numbefyof* variables by composition of functions of two
variab]es‘iio’, obtain such results for topological, that is to say,
one-to-ohetransformations. In other words, even theorems allow-
ing only” approximation, if not exact representation of homeo-
meiphisms of u-dimensional spaces by compositions of homeo-

Jlorphisms involving only two dimensions at a time, would be
~extremely valuable.

N o, ,
2a. On the approximability of transformations in three
dimensions by compositions of cylindrical mappings
Suppose we consider the smallest group G of transformations

containing the transformations of the form:

{ (@ +iy) = Wz + iy)

¥ =z
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where W is an analytic function, and all rotations of the three-
dimensional spacc. Can one approximate arbitrarily closely, by
transformations from the group G, a mapping of a sphere onto a
cube? Somewhat more generally, can one by means of such
transformations obtain approximate mappings of a polyhcdron
to any other, topologically equivalent polyhedron, by compositions
of two fixed transformations?

3. A problem on the invariance of dimension O\

There may be a possibility of strengthening Brouwer’s theorem
(¢f. Hurewicz, Wallman [1]) on the i invariance of dnnensmn"m the
following way: \\

Docs there exist for every integer # >> 1 a onesafig/continuous
mapping 7 on E* to E™, (E is the real line) sle'g that for every
biunique Borel transformation U of E™ to ‘6 E», n < m, the
transformation UTU-! of E* to E™ is d;samtmuous?

An affirmative answer would imply | Brouwer's theorem on the
nonhomeomorphism of E* and E™, # L' n. For, if H should be a
homeomeorphism of E™ to Eywwgb%a,uﬂlfgﬁ‘ HOREtvially Borelian
and HTH-! would be continuods. One may also consider the
above questions with 7 contlnuous and (possibly) many-one.
The special case m = 24k>=1 is trivially verified.

As often in our proklems, the statcment conjectured above
could have a widendpplicability: for a gencral space E such that
E* and E™ are nQL Yhomeomorphic for any pair n # .

We may a% ere parenthetically that it suffices to show that
E is not h@meomorphic to E", # > 1, and that if E2"® is not
homeomorp}nc to E2» then E® is not homeomorphic to E™.
Wit 'ﬂus we may conclude that for all # # m, E™ and E™ arc
not h meomorphlc This is actually a purely arithmetical fact:
If K is a collection of pairs of integers such that

1. from (a, b) eK and (b, ¢) e K it follows that (a, c) e K,

2. from (a, b)eK it follows that (a+ 1, b+ 1) e &,

3. from (2a, 2b) e K it follows that (a, b e K,
then, if K contains any pair {m, m}, # 7 m, K must contain a
pair (1, n), n > L
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4. Homeomorphisms of the sphere

The group of homeomorphisms of the surface of the sphere §
in three dimensions has two components. The component of the
identity forms a simple group & (a result of von Neumann and
Ulam [1]). In fact, a stronger theorem holds: for every two
homeomorphisms 4 and B of S different from the identity there
exists a fixed number # of conjugates of A, ie., Hy H3, ..,
H, AR, H, in S, whose product is B. This nurber # does not
exceed 23; to determine the minimum number séemis very difficult.

Analogous theorems for the k-sphere, k42, are as yet un-
proved, as are theorems on the simplicity)of groups of homeo-
morphisms (forming the component of t’h:} identity) of manifolds,
other than the sphere. : \

Very recent work by R. D. A’nhérson [1] generalizes these
results to groups of homeomorphisms of sufficiently homogeneous
{setwise) spaces: In particuldr}the group of all homeomaorphisms
of the Cantor ternary seipsthe universal curve, the set of all
rational and_the, ﬁgmm%gwal numbers are simple, also some
interesting partial resultson the group of all {orientation preserving)
homeomorphisms @f\S» — the n-sphere in #-space.

A question ‘conf:szﬁered by Borsuk and the writer [2] is: Given
an arbitrary cigsed subset C of the surface S of the sphere in
#-space, dgésythere exist a sequence of homeomorphisms H, of
S to all ohjtself such that lim H «(E) = C, that is to say, such that
for everyd of S, lim H, (p) exists and is in C, and every point of C
is ’3{ a limit,

*
\$

5. Some topological invariants
I\?o algorithm has yet been found which would permit one to
decide whether two given curves in three-dimensional space are
mutually enlaced. A sufficient condition for enlacement is that

~the Gaussian integral over the two curves is different from

zero {cf. 'A_Iexgndroff, Hopf [1]). Elementary examples show that
the condl.tion 1s ot necessary. (We consider here two curves as not
enlaced if there exists a homeomorphism of the whole space



iV, TOPOLOGICAL SPACES 47

under which the images of the two curves are contained in disjoint
geometrical spheres.) :

Let us draw from each point of one curve a vector to every
point of the other curve. If these vectors are all referred to a
common origin and are normed to one, we shall have a mapping
of the torus, which is the direct product of the two curves, onto
the unit sphere. Does enlacement of the curves imply that the

vectors cover the surface of the sphere essentially, that is to say
the mapping of the torus to the sphere is not retractable tala

mapping into a single point? A

Suppose that a system of xn-vectors in 3-space forms.a, closed
polygon. The vector sum is zero. If we consider the total‘moment
vector relative to some point, it is curious that thisumay be zero
as well. In a plane, for a polygon forming a simple’Jordan curve,
the total outer moment of these vectors can néver be zero; indeed
its magnitude is twice the area enclosed by the polygon. However,
it is easy to find a hexagon in 3-space @hose total moment with
respect to any point is zero. This El)gi‘nf;s; to a possibility that some
topological invariants may }%Wgégw}gﬁ TShY 8he thoments of the
various polygons formed by edges of a complex, or from even
more general tensorial exggcsisions. So, for example: We have
discussed (Chapter ITI, Seestion 4) an equivalence of a system
of vectors in n-dimensiOnal space to a unique system of vectors
located on the edges. @i’ a fixed simplex in #-space. Consider now
asimplicial subdiviston of a complex C located in the #-dimensional
space. The sys{em of its edges, properly oriented, will form a
system of yéctors which we will “‘represent” on the edges of a
fixed (but;'aii'bitrary) simplex o. The question arises as to what
propeftiss”of this representation remajn invariant under a sub-
divisiony C’ of € for the corresponding representation of the result-
ing systems of vectors of the edges of €' on o,

Another construction which may lead to significant topological
invariants is the following: Let E be a topological space, and f
a real-valued continuous function f{p), defined for all points p
of E. Let G(f, E) be the group of all homeomorphisms 4 of £
into itself such that f(A(p)) = f(p) for all p. There is a possibility

Q"
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of distinguishing between two nonhomeomorphic spaces E and F
by producing a function f on E, whose group G(f, E) is not iso-
morphic to G(g, F} for any function g on F. For example, if E
is the circumference of a circle, and F is the unit interval, one can
easily define a function f on E (say of period 2x/3) whose group
G{}, E), the cyclic group of order 3, is not isomorphic to any
group of homeomorphisms of 7, since the interval ¥ admits no
homeomorphism of order 3. R\,

One can, of course, employ mappings f on (B 'to other spaces
X than the real line. A general conjecture would be: If £ and F
are two nonhomeomorphic manifolds, ghére exists a space X
and 2 mapping f of E on X so that G{f) E) is not isomorphic to
any G{g, E) for any mapping g o{f on X.

Among the simplest questiph® are the following: What
abstract groups can be realigéd) as groups G{f, E) for a given
space E? For instance, can every finite group be realized as a
group G(f, E) where E ig;tﬁe’ plane? What are all connlable groups
G(f, E) which can re%l_lﬁ:'fm: functions f on Euclidean #-space?

Let f and’g" ‘E}“édg{%)u lo?ﬁgiftlﬁiéntransformations of I into itself (I
is the closed interval): /(g) =g{f}. Does there exist a common fixed
point p, == f{Aeh= g(py)? Communicated by A. L. Shields —
originally raised by E. Dyer. The answer is not known cven for
# == 1. Thete’are interesting partial results of Shields, J. R. Isbell,
R. E. ‘EI}émberlaﬁin, and others.

:.'\":. .
A 6. Quasi-tixed points

AN » _Let E be a topological space, 7(p) a continuous mapping of
@ 2 E Intt_) itself, and ¢, (p), . . ., 4, (#) a set of & real-valued continuous
functions defined on Z. We shall say $, is a quasi-fixed point

of T relative to the ¢, in case

$:(T(By)) = (D). t=1..,k
As an example, let E be the Euclidean plane, T'($) a continuous
transformation of E onto (into the whole of) E, ¢, (x, y) = |z,
¢2(x,y) = | ¥ |. One can show then the existence of a quasi-fixed
point (%, ,) of T relative to ¢,, bg.
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Surely one will have to restrict either 7 or the ¢, for a
significant theorem. Obviously for some T there may exist points
quasi-fixed relative to every set of &, in particular if T has a
fixed point pg = T (py)-

Does an orthogonal transformation T of the unit sphere E
in n-space always possess a point p, quasi-fixed relative to a set
of » — 1 (arbitrary) continuous functions? This is of interset, of
course, only in case the determinant of T is —1, and if true would
constitute a generalization of the ‘“Antipodensatz” of Borsuk (1
and the author. . O

It would be worthwhile to obtain results on the exgstéfxce of
quasi-fixed points in case 7 Is a transformation of (A function
space E into itsclf. For, suppose that U is a functiguial operator
and we are interested in the existence of a sohation f, of the
cquation U {f) = 0. This is equivalent to finding a fixed point f,
of the transformation T(f) = U(f) + f- Now in cases where the
existence of a fixed peint is difficult or Smpossible to establish,
we may be satisfied with the knowledge that ¢,(7 (fo)) = ¢:(fe)
for some or all sets of % c‘gfi’fc‘fﬁc{fq‘fﬁgﬁf’ﬁ?f&%i% on E. These
functionals ¢, might be, for example, the first % coefficients of f
in its Fourier or power seriesmcﬁevelopmcnt, or the first » moments
of §, etc. Of course, the¢ l{fwill, in gencral, depend on the ¢, in
case there is no true fixed point of T. Nevertheless it may be

useful in some applicdtions to know that a function f, exists which

has the same ¢, valbes as its transform T{fy).

If the f,(p) @ve¢ linear real valued functions defined on the
Hilbert space Cand T is a continuous transformation of 5 into
itself, does “there exist a point $, such that f:(T(po)) = felpo)?

Let?R{p) be a homcomorphism of Euclidean n-space. Suppose
that for every point p, the set of iterates $, T(p), 12(p),...1sa
set of finite diameter 4, and the 4, are bounded: 4, < B for all .
Does 1'(p) possess a fixed point po = T{po)?

Does there exist for every manifold M a constant B such that
every continuous transformation T of M into part of itself, having
the property

| T*{x) — x| < B

Q!
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for all iterates » and all x of M, must have a fixed point 2, = T'{x,)?
More generally, does such a constant exist for every locally-

connected continuum?

7. Connectedness gquestions

Suppose that T (p} is a differentiable transformation of the
plane. If for some point $, the closure C of the set Of'all iterates
P, T(p), T3(p), ... is connected, is the set C necessarily locally
connected (Borsuk)? . O

Let 5, and S, be two topological spherigal\surfaces (i.e., sets
homeomorphic to the surface of the geome%r%ic sphere) in Euclidean
3-space, with S, contained in the interjopn of S;. According to the
Jordan-Brouwer theorem, S, decompesés space into two Tegions,
and we assume S, is contained in,éfie of them. Does there exist a
surface Sj, topologically sphefical, containing S, in its interior,
and contained in the intéripfuﬁ)f S,. The problem is not trivial
because of the well-known:&&amples of Alexander which show that
the interiorwcgwgdggﬁ%gé}'%q% 1_S‘E{[Illlll{ere need not be homeomorphic
to that of a geometricaksphere. Analogous problems exist for higher
dimensions (Schr:c@r-Ulam [1]).

One may gendrdlize the situation: Given are three topological
spherical surfﬁees Sy, Sg S3 so that S, is contained in the
interior of+Sy, which in turn is contained in the interior of S5
‘Can one fifid a topological sphere 5, either contained in the in-
terior.@f' S, and containing in its interior S, or contained in the
in\tégior of S; and having S, in its interior?

Ny 8. Two problems about the disk

V) Suppose that T(p) is a homeomorphism of the disk D (all
{r, y) with 22 4 42 < 1) onto all of itself. Do there exist arbitrarily
small “triangles,” i.e., triplets of points P1, Pa, Py congruent to the
triangles formed by the images T(p1), T(ps), T(p,)? Do such
triangles exist with prescribed angles?

Given a metric space 4, a topological space B, and a (many-
one) continuous mapping T on 4 to all of B, we consider the
diameter 4, of the set 7-1(3) for every b in B, and denote by
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np the lcast upper bound of all d,. Does there exist, for every
¢ > 0, a continuous mapping T of the disk .D onto the surface B
of the torus with #np << g? *

9. Approximation of continua by polyvhedra

Let € be a simple closed curve in Euclidean 3-space which is
ncn-knotted, that is to say, there exists a homeomorphism of the
whole space which transiorms C into the circumference of a cu:c]a
Can € be approximated arbitrarily closely by nonknotted polygops?
This problem, considered by Borsuk and the author in 1930vhas
connection with the problem {of Alexander) of approximability
of arbitrary homeomorphisms of the x-dimensional ‘space by
simplicial ones. An affirmative answer can be oblained from a
theorem recently established by Moise [1]: wice wersa from a
positive answer to the above, ie,, from E;g}(&ppr@}dmabﬂity of
nonknotted curves by nonknotted polyggns,the approximability
of homeomorphisms follows. In the spaces of higher dimension
than three, an analogous sxt\lj%E(m 1;1‘11121 Iob‘cam namely, approx-
imability of nonknotted spheres %}1‘, nonﬁn%?%&l polyhedra may
be sufficient to prove the apprommablhty of general one-one
continuous transformations by‘Qne one differential transformations.

A problem of Borsuk ¢ &;’mected with the above concerns the
possibility of approximgtjon of a unicoberent continuum in 3-space
by unicoherent polyhédra. (A unicoherent continnum is a con-
finuum E such th\é,t' for every decomposition E = 4 4- B into
two continuas 458 is a continuum. The disk is unicoherent, the
cn'cumfercnoe%f the circle is not.)

There a:re' a number of unsolved problems dealing with the
appr m}a'blhty of continua with various given properties by
polyhedra having the same properties.

10. The symmetric product

By the symmetric product E7 of a set E with itself is meant
the class of all subsets of at most # distinct elements of E. Thus

* Note added in proof: A negative answer has been demonstrated by
M. K. Fort, Jr.

™\
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E? may be obtained from £® by identifying all #s-tuples
{#1, . .. P,) whose component points form the same se. The
importance of this “"phase space” lies in the fact that some
gquantum statistics, for example, the Fermi-Dirac statistics,
operates in similar spaces, just as the Maxwell-Boltzmann statis-
tics operates in the direct product E= Thus the phase/space of a
system in which certain particles are mdlstmgtushable is a sym-
-metric product of the spaces corresponding to the' partlcles

If £ is a topological space, a metric may Jbeintroduced into
E} using the Hausdorff distance between® two sets of points.
The properties of symmetric products as@\less weu Xnown than
those of the direct product of spacega ¥t ‘Accordowm that,
whercas the direct product of # circlesresal ce into tdimensional
torus, their symmetric product, {or n == 2jh. Doer4débius band.
Moreover, if E is a real intervaly E?, for 4hg S. 3, and 4, is the
corresponding F» whereas ,for n =5 th1s igroly the case (Borsuk,
Ulam [17]). )

The metrwed d sym iI}Jej‘arlc JRroduct £} forms an sth order ap-
proximation 10 the space of all closed subsets of a compact space
E (with Hausdozsfi distance as the metric for the latter space}.

The exact ’eqpologlcal structure and, in some cases, even some
very generad\topological properties of E? remain unknown (even
when F 13\the interval and z > 5). For example, the existence of
fixed. pqmts {for arbitrary continuous mappings) has not been
es bhshed :

Jban the quasi-fixed point (see Section 6) theorem be proved
fUr Eg, for & < n arbitrary real valued continuous functions,

v whcre E is the surface of the #n-dimensional sphereP (Compare
Bott [1].}

The symmetric product as defined above is only one of many
different constructions possible on E®. Products based on other
rules for identifications of certain sets of #-tuples in E® may lead to
interesting spaces. Such possibilities have not been studied
systematically,

While the formation of a topological space E} from a topological
space £ is readily accomplished, it is not easy to see a possible sym-
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metrization in the case of algebraic structures. There seems to
be no simple way to obtain a symmetric product of a group with
itself. As a matter of fact, the symmetric proeduct of a group
space forms often (as in the case of the Mébius band) a topological
space which will not support any continuous group operation,
In some cases, however, e.g., the 2nd and 3rd symmetric product
of the line with itself, E2 and E? are homeomorphic to £2 and E3, {
respectively. This means that the analogue of vector additien
can be continuously defined here. This leads, however, tol an’
algebraically rather artificial rule for “adding” elements Iw E?
or E3, %

7

11. A method of proof based on Baire cate_;i:)’r:y of sets

The theorem stating that a complete metricsspdce is not a set
of first category (sum of countably many nowhere dense sets) has
been used to advantage for obtaining exsstence proofs in modern
mathematics, notably in the theory of functions of a real variable,

and in topology. Thus, for example in (erer to show the existence
N N B W dbirau l'arg.or in
of continuous functions without ciel:watwes t a.l%y point, one may

prove that the set of such fur}ptiﬁﬁ:; forms a residual set {comple-
ment of a sct of first ca.tego‘rg,?} in the space of all continuous func-
tions. Again, in order to §liow the existence of metrically transitive
measure-preserving trahsformations, one proves that the set of all
such mappings is se§idual in the space of all measure-preserving
transformations.»¥é show the existence of a homeomorphic
image of ansarpitrary n-dimensional set Z, contained in the
2 -+ 1-diménsional Euclidean space E?"*1, it is quite simple to
show tha{:f,."in the space of all continuous (possibly many-one)
mapypifigs’ of the set Z, into E***, the one-one mappings form a
residuil set. There are many other examples. '

A possibility exists of using another theorem on residual sets
(or, more generally, of second category) to prove, instead of
existence theorems, propositions involving the complementary
quantifier, i.e., the “for all” theorems. Thus, a well-known
theorem asserts that if G is a connected topological group and H
is a subgroup of it which is not a set of first category with respect
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to G, then 7 contains ail the elements of G.

Similarly, if & is such a group with a finite Haar measure
defined for its subscts, and if /7 is a subgroup of measure > 0,
then H = G.

To illustrate this possibility let us consider as an example the
well-known theorem of van der Waerden which asserts that every
partition of the set of all positive integers into two subsets IV, and
N, has the property (P): at least one of the sets Ny and N, contains
finite arithmetic progressions of unbounded length. Sufpese that
we make correspond to every partition a real numbef %, (regarded
as a point on the circle of the circumference W\

T=a, 271+ a, 272 . (U

whete g, = Oif nisin Nyand a, = 1if # isin W,. It is immediately
apparent that the set H of all » forg¢Hich the corresponding
partition has property (P} is a set of shéasure 1 in the contintous
group G of all # (under addition module’1). Since van der Waerden’s
theorem is true, it is cloar @ fe#giors that H — G. It would be
interesting if it could be Shq)gvil' by a relatively simple argument
that our set H 1s a gropp lggar’g(h&sg}llpat H =G,

There are quite a few\combindtorial theorems and problems
still unsolved, wheressuch an approach could be tried.

&
42, Quasi-homeomorphisms

Let 4 and™B’be two manifolds (i.e., topological spaces such
that neigh’ggﬁ‘ﬁoods of points are homeomorphic to #-dimensional
Euclidegaspheres); we suppose them to be metrized. We define
A at}di B'to be quasi-homeomorphic if for every ¢ > 0 there exists
.g\g?;jtinuous mapping 7, of A onto B {all of B) such that for every

Sg,)a" in A whose distance exceeds e, T,(a) # T,(a’) in B, and there
exist similar transformations S, of B onto A. Are A and B
necessarily homeomorphic?

This problem was proposed in a paper by C. Kuratowski and
the author [1]. It would even be useful to show that some general
topological invariants remain unchanged, in case of manifolds,
for which there exist e-mappings of both 4 into & and & into A.
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The property of possessing a fixed peoint under every continuocus
mapping into itsclf could be such an invariant. Similarly the
“quasi-fixed point’’ property (for any finite number % of arbitrary
real valued continuous functions) may perhaps be shown to be
invariant.

13. Some problems of Borsuk ~

In these problems 4 R-sets denote compact absolute retracts,
that is to say, scts such that in every containing space they ¢awn’)
be obtalned as continuous images of the space by transformations
which are equal to identity on these sets. AN R-sets dcgot‘é«.com-
pact absolute retracts of their neighborhood. ‘O

1. Are all homology dimensions (in the sense of"}ﬁexandroff)
for AN R-sets identical with the usual dimen:q'QI}P

2. Is it true that every n-dimensional C({I’xp\actum is homeo-
morphic with a subset of an (» + 1)-dimensional 4 R-set?

3. Is it true that every n-dimensionél'ANR—set contains an
(% -~ 1)-dimensional ANR-set? o3

4. Is it true that every (2wt 1)-dimensional AN R-set
contains topologically every coni éﬂ:gﬁ‘ aglfib(gr]rr}eréﬁio;% < #?

5. 1In the three-dimcnsiondl Fuclidean’space, “atefthe 4 R-sets
the same as acyclic locally\dontractible compacta?

6. Does there cxistMor‘every AN R-sct a polytope having the
same homotopy type {in the sense of Hurewicz)?

7. 1Is the factofization of a continuum into one-dimensional
factors unique~{Factorization = decomposition into Cartesian

product.) N\

Note add(e}:f;fn proof: Compare the beantiful recent example of Bing [17.

V



CHAPTER V
Topological Groups

1. Metrization questions .

One of the general problems of topological algebra is to determine. {\
all possible topological groups which are definable for a given,
abstract group G. This means the characterization of all topolgg“lés.\
on the set G in which the group operation will be contintoeus.
There are many special known results related to this, ﬁfé‘blem.
For example, it has been proved (Ulam, von Neumann} that there
exists an abstract group of the power of the continwwrn such that
no metrization, for which the group operati@; 1s continuous,
will make this group separable. Such a groupl can even be chosen
to be abelian (commutative). We may mjenfion here a few open
questions: o\ ¢

Can the group S, of all permutatij@hs“ of the set of all integers
be metrized in such a way that tbé'éi’oup opcration is continucus
in the metric, and the groupbe@é‘fﬂe@bﬁa“}lﬁﬂsﬂ @5fhhct space?
1. Schreier and the author-llave proved that no metrization is
possible which would ma 6.1t compact. This is due to the follow-
ing purely group-theorstical property: Starting with any truly
infinite permutatign{}b: that is to say, one which changes the
positions of infinitely many integers, one can obtain, by multi-
plying a {ixed qumber IV of suitable conjugates of this permutation,
an arbitrary infinite permutation. In a compact topological group,
given anyiinteger N, one can find a neighborhood of the identity
SO S ‘that the produéts of at most N conjugates of the elements
of -this "neighborhood will still form a set which is not the whole
group; in fact, by choosing & sufficiently small, one can insure
that elements of this form will be confined to another neighborhood
of the identity. Now any neighborhood of the identity in this
group would have to contain, were it compact, a truly infinite
permutation.

57
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There are the four obvious metrizations of the group Se based
on its invariant subgroups: (a) the identity permutation, {b) the
finitc even permutations, (c) the finite permutations, and (d) the
whole group Se. The “natural’” topology in the whole group Se
is the following one. A sequence of permutations converges to a
fixed permutation if it converges weakly, that is to say, the images
of every integer in these permutations become, after a while, equal
to the image of the limiting permutation and stay constast. The
- same should be required about the inverses of these perifititations.
This topology is easily defined by means of a metric. The topology
thus obtained leads obviously to a nonlocally ,@é,m'pact space.
An analogous topology introduced in the illvaria;ﬂt subgroups will
also lead to nonlocally compact spaces sincesit\amounts to having
the space of co-sets discrete.,

Are there any continuous metrizationsg obS., diffcrent from these
four? Since all four lead to nonlegally compact topologies, a
theorem stating that no other confihlious topologies are possible
would, combined with certain westlts of A. Weil [1], provide
definite examples of groups in Which no invariant measure (Haar-

Weil measure) is possible. tS ‘
www . dbraulibrary.org.in

2. ’\'Unfversaf groups

The theorems of%en Neumann, Pontrjagin ef al. [1], on the
representation of{ ontinuous groups imply that every compact
topological 8roup/(r is continuously isomorphic to some subgroup
of the direetyproduct of all finite dimensional rotation groups.

Does 1 €re exist a universal compact semi-group, i.e., a semi-

group, U\ such that every compact topological semi-group is
cont(mibusly isomorphic to a subsemi-group of it?
{"€an one show that the group R of all rotations in the three-
difnensicnal space is isomorphic (as an abstract group, not
continuously, of course) to a subgroup of the group Se of all
permutations of integers? Or, perhaps quite generally: is every
Lie group isomorphic (as an abstract group) to a subgroup of
the group Su?

Does there exist a separable, locally-compact group U such that
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every locally compact group is iscmorphic te a subgroup of U?
The results of Gleason, Montgomery [1], and Zippin generalize
those of ven Neumann and Pontrjagin to locally compact groups,
A separable continuous group U, “universal” for all separable
continuous groups G (in the sense that every such G be con-
tinuously isomorphic to a subgroup of U} may not exist.

3. Basis problems

A finite set of elements of a topological group which generate
a subgroup dense in the whole space is called a finite basis. Ther€),
exist isolated results on the existence of such bases, but thare”
seems to be no systematic investigation of their existencg and
properties for general continuous groups. Nor has theffniﬁimal
number of clements in a basis been determined in“’fnbst cases
where a finite basis had been shown to exist. We adiition here a
fow of the known results, ’,:\\:

Let S be the group of all permutations of the integers, with the
“natural”’ topology, i.e., a sequence of perimitations converges to
a limit if the convergence is termwise, and the sequence of inverse
permutations converges in the same? sense to the inverse of the
limit, There exist two clements in s’;’fs‘t’f&]{ %ﬁ‘a{fbfﬁlébé%ﬁﬁngenerated
by them is dense in the wholé group. In fact, a specific set of
products of powers of these,tWo elements can be shown to form a
dense set in S {J. Schreier, Ulam [4]). There is no scarcity of
such pairs of pcrmuta.tibns; almost every pair {in the sense of
category) will serve™ds’ a basis.

An analogous ,sit'ﬁzﬂ:ion obtains in the group of homeomorphisms
of #-dimensionaduclidean space (J. Schreier, Ulam [1]). Does
this group péssess a basis consisting of diffcrentiable transfor-
mationg?(" "

In t‘i\c}::dsc of finite dimensional topological groups, one knows,
for example, that the group of rotations contains pairs of elements
generating dense subgroups.

In every semi-simple connected Lie group there exists a basis
of four elements. It is not known whether this is the minimal
number (Schreier, Ulam [3]}.
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One can find a pair of rotations of Hilbert space which generates
a dense subgroup (in a weak sense) in the group of al! such
rotations (J. Schreier [1]).

Less is known about topological semi-groups, but the general
sttuation seems to be quite similar to the one for groups, to judge
{rom the evidence we have so far. Thus the class ' of all {many-
one) transformations of the set of integers into itself has a natural
topology. There exists a finite set of elements generating a sithset,
dense in this topology, in the semigroup Te. A similam {esult is
known for the semi-group of continuous transformations of the
sphere into itself (Schreier, Ulam [1]). A

Let H, denote the group of all homeomorphisfus ‘of the n-cube
I” onto all of itself, mctrized by means of th@'\-éﬁstance function:

plhy ha) = 3% p (B (p), halp) + R p(1p), hi68)
bE s igern

the latter distances referring to theMEuclidean metric in E®. Is

it true that almost every pair ,of homeomorphisms generate a

group dense in # ? (“Almost.é{s}rcry” is used here in the sense of

category, i.c., do these ﬁﬁ{ls[%ggln}; &gspidual set in the space of

all pairs?) N

Again, let H% dengté\the kth direct product of the space #,
with itself, with the ustal extension of the above H » metric to a
product space metric. Does almost every element (i, ..., &) of
HE provide % 8€L Ay, ..., &y which generate a free group of 4
generators M7,> The same question may be asked about the
sem_i‘—gro%ﬁ“\(‘;’ of all continuous, not necessarily one-one, transfor-
matloqg\o #n-space,

G]iven a pair of measure preserving transformations S, T of a
space E into itself one may consider transformations such as
S/T(S), T(TS)), S(TAS)) - . . ete. Specifically, to every real
number 0 < x =1 in binary expansion 2 — A S SR
o, = 0 or 1, we may make correspond a sequence of transfor-
ma..tlons interpreting the symbol 0 as applying S and 1 as applying
£ In the order indicated. Ts it true that, for almost every point ¢
of the space £ and for almost all z, the resulting sequence of
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images: ¢, S(p), T(S{p)), T(T{SP), S(T(T(S(p))) etc. will be
untformly dense? '

The problem is: is this sequence uniformly dense for almost
every (in the sense of category) pair of measure preserving
transformations of E,?

Is this true for a Haar group when S, 7" are transformations
obtained by left multiplying the group by two elements s, ¢ (if the
Haar group is simple)?

It appears likely that there exist finite sets 73,7y, ..., T,
{(k = 2?) of measure-preserving transformations of the Euchdga‘n
cube generating a group dense in the space 2 of alf continwous
measure preserving transformations. If this were so, oﬁe ‘could
define a measure function in the space of all mcompreéﬂble flows
of say the three-dimensional space into itself. Thisimeasure would
be obtained by considering the Lebesgue measuseyh the space of
the z’s corresponding to the transformationg,:as above.

X

4. Cond:twnaﬂy convergent sequences

Let V,,n=1,2,. be a condltlonaﬂy convergent series
of vectors. It is we]l known that if\we rearrange the terms in all
possible ways and form their sums“f‘{he%?%%’ﬁgr%ﬁ §5Pm a linear
manifold in the vector spa(,,e\ Garrett Birkhoff and the author
have noticed that this &ellMkmnown thcorem can be generalized
if one considers the V2\t0 bec elements of a compact group G;
then the “sums” of @l possible rearrangements of the sequence
form a coset modxdo a certain subgroup of G. Does a similar
result hold for@“bre general, noncompact topological groups?

s'\

N
%
\ }

Q.



CHAPTER VI
Some QQuestions in Analysis

1. Stability

We intend now to discuss, by means of a few examples, t‘h\e\
notion of the stability of mathematical theorems considered fromna-
rather general point of view: When is it true that by changing”‘a
little” the hypotheses of a theorem one can still asserpythat the
thesis of the theorem remains true or "approximately’f\{’rue? The
notion of stability arose naturally in problems of théehanics. It in-
volves there, mathematically speaking, the contibuity of the solu-
tion of a problem in its dependence on injtial pardmeters. This con-
tinuity may be defined in various ways. Otten it is sufficient to
prove the boundedness of the solutionsyfor arbitrarily long times,
¢.g., the boundedness of the distanqe:ﬁéfween the point represent-
ing the system at any time from thgunifialpainty _%tg_iﬁeedless to
say, problems of stability occysin other branches o physics and,
in a way, also, even in puréymathcematics.

We shall not try to forfaulate a generally applicable definition
of stability. One could @ttempt to do this by introducing suitable
function spaces for pliysical theories and various metrics in them,
but we shall be €onitent instead to indicate some of the salient
features of tl‘bié""\ééncept as it appears in purely mathematical
formulationsi\ In particular we shall formulate some problems
concerning the stability of solutions of functional equations.

For{?ér’jr general functional equations one can ask the following
question. When is it true that the solution of an equation differing
slightly from a given one, must of necessity be close to the solution
of the given equation? Similarly, if we replace a given functional
equation by a functional inequality. when can one assert that the
solutions of the inequality lie near to the solutions of the strict
equation? Instead of trying to define a general class of functional

63
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equations (one recalls a dictum of Poincaré’s: “On ne peut guére
définir les équations fonctionnelles en général”) for this purpose,
let us restrict ourselves to examples. A good illustration, in an
elementary case, is provided by a result of Hyers’ [1], resolving
a problem of the author:

I f(#) is a measurable real-valued function defined for all real
satisfying the inequality ~

e+ 9 — (I + ) < e ‘O

everywhere, one can show that there exists a functioh E(x) =ax

such that N
e+ 9) = 1e) + 1y) and | L) B | < o
everywhere, We say then that the funct}cigial e;luation of linearity
Mo +y) = e 1)

is stable with respect to a change inte an inequality. (By the way,
even if f{z) is not mea.surab]q,.jéhe can assert that the solution
of the inequality is close to goihe — nonmeasurable perhaps —
solution of the strigtdg%@’giﬁibﬁary,org,m

One can ask, much Jtere generally, for what metric groups G
Is it true that an e- utomorphism of G is necessarily near to a
strict automorphism »{An e-automorphism mecans a transformation
{ of G into itself'such that p(flx-y), f=x) ) <eforallz ¥
in () There shotld exist then a constant #, depending only on
G and nozt\‘(}l f and an a(x) depending of course on /, with
alx - y) ~ w{z) - a{y) such that pla(®), f(x)) < ke for all z. We
require\'this to hold e.g., for all continuous or measurable, /.
The ‘above result of Hyers’ answers the question when G is the
group of real numbers relative to addition. Hyers also obtained
results in the case when G is a more general vector space. Another
paper, by Hyers and the author, answers the question, in an
affirmative sense, for some infinite-dimensional vector spaces.
In this and other examples, it should be pointed out that a for-
mulation of stability ““in the large” requires a metric in the space
of functions. This is, of course, true in all the classical studies
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of the problem of stability in differential equations or systems of
differential equations. One could ask for weak convergence of

solutions — pointwise — or more strongly for uniform convergence

in the norm {cf. Hyers, Ulam [1, 2]).

It is interesting that the notion of stability in the above sense
can be introduced even for discrete structures; thus, for example,
Shapiro [1] has answered a question of the author by the following
result. If £{a) is an automorphism “up to an integer & of the set of

all the integers mod # where p is a “large’” prime and % is an,
infeger “‘much smaller’’ than $, then under suitable conditions, ™

f{a) is a strict automorphism. One could also ask for stability ‘ot
configurations or constructions even in elementary gegfuetry.
Thus, to give an elementary and ad koc example, and {ddepart
from linear formulations and illustrate what we meanby’a “quad-
ratic”’ problem — if the constructions of the Pascal'and Brianchon
theorems for arbitrary sextuplets of points loca:té\cxil on a continuous

curve always result in points which are almest collinear — or
in lines which are almost concurrent -—\s the given curve ap-
proximately a conic? o\

N

Still another illustration in metrio: %eé)brp%tlrlgrap g ers and the
anthor [1, 2] have shown thatra transformation i Fuclidean
space which changes all dista;}eés by at most & > 0 is of necessity
near to an isometry, that ie\a” transformation siricily preserving
all distances. It is not kgown for what general metric spaces the
above statement remains true.

Many questions ajout transformations suggest themselves in the
same vein. It oe\h:\"ﬁic shown that a transformation which very
nearly prcser:vge's\{neasure in a Euclidean space is close to a trans-

N

formation }mhikfh strictly preserves the measure of all subsets. Can -

one progeit'in more general measure spaces? Is a transformation
which is iearly laminar of necessity close to one which is strictly so?
What can be said about transformations which are almost irrota-
tional? Questions like the above on stability of properties involving
differential flows lead to general problems about the stability of
differential expressions. The following theorem was also noticed
by D. Hyers and the author [4].
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Let f{z} be a rcal function on the linc with its nth derivative
f1" @y} == O {or a certain », and suppose that /* (z) changes signin
the neighborhood of #,. For every ¢ = 0 there exists a § > 0 such
that for every function g(x) of class C*™ satisfying [F{x) — glx)|<d,
there is a point &, such that g/ (x)) — 0 and | e, — 29! <& Itis
perhaps remarkable that the hypothesis involves only the nearnes
of the functions / and g themselves, and the number 8 is depe@ent’
on ¢ alone.

One can obtain a partial generalization of this,fenilt. Let
F(z, f(=), f'{x)) be a continuous function of the thrée) Arguments,
with F(z,, f{z,), ' (x)) = 0 for some %, and sdippose that F
changes sign in a neighborhood of %y Then aghin'for every ¢ =0
4 d > 0 cxists such that for cvery g(x) of clags € closer than é to
f{z) there is a point @, close to 2, such that Ry, g(xy), g' (=)} =0,

Under what conditions can the previohs theorem be generalized
to Flw, f(x), ..., " (2)) or to F(imyy): of/ox, 2f/dy, . ..)? The
most interesting question of this kipd concerning functions of two
variables is the simultaneous Manishing of several partial deri-
vatives at a point (z,, %) H&re one has to be careful about the
meaning of “Chﬂﬂgg\gg‘gljﬁlgﬁ'}'}jjpa;‘]};tgghejghborllood of a given point.
It seems necessary to assume at least that all combinations of
sign occur, Very little s known about such questions in the #-
dimensional case, %v.

A ‘_cheory of thgi(ialculus of Variationsin the Large developed by
Marston Morge 1] Operates with qualitative or topological defini- |
tions of cnﬂc“al points of functions of several variables. This
theory 'E(o{?ides a general qualitative basis for the phenomena
imp]ip@ Py the vanishing of first derivatives. Qur remarks would
s::sgm to indicate that there may exist topological definitions

Qeldtive to expressions involving higher derivatives.

We have dealt above with stability of solutions of some func-
t:?onal equations — when we change these equations into inequali-
ties. One might study this question when an inequality is given
ab initio. For example, there is the result of Hyers and the author
[3] that a function which is almost convex lies near to a strictly
convex function. In the most elementary case, it states that 2
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solution of the functional inequality

fle+y) —fle) —fly) <e

is a function differing everywhere from a convex function by at
most a fixed multiple of &

The subject of small deformations is treated explicitly in topo-
logy which, as once defined by Poincaré, is the study of those
properties of figures which remain true even when the figure is

drawn by unskilled draftsmen. This definition demands more\
than the invariance of properties of sets under 1- -1 continueus™

transformations or homeomorphisms. It would seem to regifire
such invariants under more general e-deformations. Ma:l"fy ‘topo-
logical properties are known to be invariant undeg.$ych trans-
formations. For example, two manifolds that afe 2deformable
into each other for every s > 0 have the same Bgt#l numbers and
other homology invariants. However, there afe ‘many topological
properties for which this more general;iﬁv’ariance is not yet
demonstrated. R\ _

It is of interest not only to pm\{e:i‘hat for sufficiently small ¢
certain topological properties re‘r’;@@}dg%% ] glag‘ty_cl)llpc_ll%}" e-defor-
mations but actually to find the maximal value of Shis ¢ More
precisely, we have a given mbstric set and we consider all con-
tinuous mappings of this*set into another set such that no two
points distant by more that s have the same image point. In other
words, the transformation does not coalesce any pair of points
whose distance i or more. Suppose, for example, the given
set is an S, (sheface of a sphere in # dimensions with radius one}.
A theorem of \Borsuk and the author [2] asserts that if this set
S, is Iﬁn\ap’pea into a set in the Euclidean space E, in such a
way that o two points whose distance is greater than a certain
I, coalesce, then the image still cuts the Euclidean space into at
least two regions. Determination of the number i, which is the
best (largest) constant has been made in this case. An analogous
determination of such constants would be of some interest in the
case of other topological properties. For example, suppose that
7, is a torus given metrically in the Euclidean space E, as a

n

Q"
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product of two circumfercnces of the circle of radius I. Oue
should determine the maximum %, such that if this set 7 is mapped
into a Euclidean space in such a way that no two points more
distant than %, coincide, then the Betti numbers of the image
must be grcater than zero. (Compare our problems on quasi-fixed
points in the previous chapter.)

The theorems and problems concerning the stability {of the
vanishing) of differential expressions for functions of # varl?hules,_
discussed above, can be considered for functionals. If wé Considera
typical elementary problem, that of finding an exffemum y, of

Iy) = [} Flz, y@), y'@) dpl )

an analogous question to the one about deﬁ;}a\.tives of functions
of a finite number of vatiables arises tdmely, the conditions
which guarantee that for every e = 0/#hére exists a 4 > 0 such
that for all sufficiently “regular” @(=} ¥, z) with | F -G <4,
there exists a minimum y, () fpf:"

J@) = [} 6@ @), v @)

where |y — g, | ‘§\§w_yg95£§i$ﬁ]lgp§_0h§§ﬁ merely the proximity of
£ and G, and nothing ig4a%umed about the proximity of their par-

tial derivatives, occufring in the Lagrangian equations. Speaking
descriptively, the‘@uﬁstion is: when is it true that solutions of two
problems in the galculus of variations which correspond to “close”
physical data’niust be close to each other? Affirmative theorems of
this sort }@}ﬂd ensure the stability of the solutions of physical
problenisieven with respect to the introduction of small additional
“hiddg;)] parameters. Since this situation regarding the stability is
obsenre at present even for total differential equations, it is perhaps
futile at this stage to speculate about more general formulations in-
volving partial differential equations from this point of view.
However, the following remark should perhaps be made. It scems
desirable in many mathematical formulations of physical problems
to add still another requirement to the well-known desiderata
of Hadamard of existence, uniqueness, and continuity of the de-
pendence of solutions on the initial parameters. Specifically one
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should have a stability in the stronger sense illustrated by us
above: the solutions should vary continuously even when the
operator itself is subject to “small” variations.

But even in problems of discrete mathematical structures, the
notion of stability can be introduced quite generally. One could
cven speculate about defining a distance between statements in
some formal system of mathematics in such a way that definitions
of sets which are “‘close’” to cach other, say in the sense of a Haus-
dorff distance, would correspond to points with a small separationf ),

£\
o\'

2. Conjugate functions O \Y

We call two transformations f and g of a space E?iﬁto itself
conjugate if there exists a biunique % such that {8 hgh—t, 1t is
well known that two one-one functions f anc},'g\\oh an abstract
set E to itself are conjugate if and only if the{wo decompositions
of E into cycles under § and under g are similar. This means that
the number of f-cycles of length  is thelsame as the number of
g-cycles of length [ for every cardinal¥ In the case of functions f
and g which arc many-one a similaithaprem ipay, begoved, gen-
eralizing the concept of cycle toghat of a “tree”. By a tree is meant
aminimal set 7" containing th€jimage f{x) and the complete coun-
ter-image f~1(x) for every ﬁ@}lt x1in 7. A tree may be represented
as a graph containing.at)most onc closed cycle. Different trees
arc disjoint. It is obyious what is meant by two trees being of the
same type. A neqe{fs}tfy and sufficient condition for two many-one
functions on ap'abstract set £ to itsclf to be conjugate is that the
number of tkees of each type be the same under f as under g.

A geugréﬂ’ “investigation of conditions for conjugacy in case E
iz a gﬁ@r} "space and f, g, and % are of restricted character, e.g.,
where continuity for % is required, seems lacking. In particular
we may ask the following questions:

If two transformations f, g of #-dimensional Euclidean space
E* are each given by polynomial forms and are conjugate under
a continuous %, are they then conjugate under a lLinear trans-
formation A, of E"?



70 A COLLECTION OF MATHEMATICAL PROBLEMS

If two continuous transformations f, g are conjugate under a
Borel transformation %, are they then necessarily conjugate under
a continuous transformation %7

Under what conditions is a homeomorphism of E® conjugate
to a uniformly continuous transformation?

Restricting ourselves to one dimension: is every ‘‘smooth”
function f{z) on (0, 1} to {0, 1) (e.g., every such polynomial)
conjugate to a suitable plecewise linear function? For exampIe be
parabola f(z) = 42(1 —- ) is conjugate to the functiof, defmed
on {0, 1) by the “broken line” O

"

glx) = 2=, 0
glw) =2(1 — =), }
under the biunigue transformation
hiz) == 2fm sin ~1, V@
An affirmative answer to the abowe(guestion would reduce the
study of the iteration of such funCtlQIlS /() to a purely combina-
torial investigation of the propertles of “broken line”” functions.

It may be advantageous_tosconsider a type of conjugacy (at
least formally) weaker il ony dedifted. Let us say that two
functions f{z) and g(x) atédsymptotically conjugate if the behavior
of iterates of point Qh&er f and under g is similar in the following
sense: there exists & biunique function %(z) on (0, 1) to itself,
such that for almost every @ on (0, 1), A(R,) = S,, where R, Is
the set of pomts which have identical sojourn time in (0, 4)
under iteration of f, and S, is the corresponding set for g.

Is if™then truc that every polynomial f(zx) is asymptotically
con]ngate to a broken-line function g(x)? These problems are, of
egutsc, not limited to the one-dimensional case and are indeed

“of greatest interest in higher-dimensional spaces.

£
*l

ll/\ HI\
JI!\ Jlf\

3. Ergodw phenomena

In this section we shall be concerned with iteration of functlon:a
and transformations, more particularly with the asymptotic
properties of the sequence of iterated images of points. The great
advances in ergodic theory of the last few decades have clarified



VI. ANALYSIS ' 71

the mathematical basis of statistical mechanics to a considerable
if not to a complete extent. Roughly spcaking, the analogues
of the laws of large numbers in the theory of probabilities do now

exist in the form of ergodic theorems. The more detailed analysis
" of analogues of the Gauss-Liapounoff-type theorcms is by far
less complete. We should mention here parenthetically, that often
it is importani to deal with transformations of noncompact
spaces, e.g., the entire Euclidean space, into themselves. Certain
theorems formulated originally for the compact case can begs
generalized under suitable formulation for such cases. So,'.fxbf“‘\
example, the Kronecker-Weyl theorem on the existence of ergodic
means for rotations in n-dimensional space can be gene}’é]‘ized,
to some extent, as follows. : R A

Let L be an arbitrary lincar transformation of thie’ Euclidean
n-space into itself. Let C be any cone of directxi@s in space. For
almost every point ¢ the scquence of iterated dmhages L"(p) has a
sojourn time in C. In other words, the érgodic limit of angles
exists for almost all initial points p. 7

If the transformation o

w; =] 1E%W.db?mhibrary.org,in
Ty - K
)
of Euclidean n-space E"to itself is linear:

\‘”;.& 2 ;g A = {(ay)

4 - ¥
with all coeffi 'e%l\éé a; > 0, it is well known (Frobenius-Perron)
that there eXists a unique positive characteristic root » and
a unique \umt jnvariant vector @ — (&, . .., &,) with positive
compafnénts such that §4 = #7. Moreover, for every vector
9 = {2,7. . ., Z,) With positive components, the sequence of points
on the unit sphere:

vA"f|vA"], n=12 8, ..,

converges to 7. These facts establish the existence of “steady-
state’” distributions in many problems involving the multiplication
and diffusion of particles.
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A simple result of this sort cannot be hoped for in case the trans-
formation T is nonlinear. Such transformations occur naturally in
various physical problems involving interaction between the mul-
tiplying and diffusing particles. For example, if one takes account
of the dcpletion of the medium in a multiplicative process, the
equation for the moments of the probability flow is nonlinear.
Also, if there are particles of, say, two different types, and the
multiplication of cach type depends upon the number of both
types present, the corresponding transformation is also onlinear.

To illustrate the simplest type of question that agises in such
cases, suppose that the transformation 7 has the\form

1@y @) = L@y -0 2) o+ Gl s i= 1,

where the [; are linear and the g, purﬁ\\q‘uadra‘clc forms in the
variables ay, . . ., @, A

The problem of interest concerns the asymptotic behavior of the
sequence of directions of 77(x) cnefated by iteration of T on an
initial vector #. The Frobeniug\theorem may perhaps gencralize
to the following, which wewState as a conjecture.

1. Given a cone“@"%ﬂ%ﬁ%&?f@n% S&iing from the origin and

“almost any” vector :c\: {1, - - ., x,), the “time of sojourn” of
the iterates 77(x) 1 € exists.

2. For a givep\cone C the “sojourn time” of 7%(x) in C may
depend upon g {ut there are in this case only a finite number of
values of spch/times.

The latfér”conjecture, if true, would mean that the space E”
splits ilt0 a finite number of disjoint subsets S,,..., S, all
vect\ors z in S; having the same sojourn time # for T*(x) in C.

“Fhe considerable variety of physical problems which can be
Est in the form of a study of such transformations provides an
interest in the investigation of their iterative properties. Thus
the equation # = f(x) where # is a vector becomes

:'.EV_H = " + f(xv) - g{x;,»)

in difference form, which in turn leads to the transformation
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and its iterations.
In similar fashion, a partial differential equation of the form

ujot = Flu, ,, %, Hag, Way> Wygr- )

when written in difference form on a finite mesh can be regarded
from exactly the same point of view, the function u(z, y) being

considered as a vector N\
@y, H1)s - o wlEn Ya)] = g oot =2 Oy
A~
the function %’ at time # 4 1 being given in terms of # at time'?
by an equation of form A
w = G{u) .mj\"’

The problems proposed on quadratic transformatiehs in spaces
of two or more dimensions seem rather diffic It is of interest
to consider in more detail the one-dimensional case.

R M
o

4. The Frobenius ‘t‘i:;ar;sform

Let 4 = f{z) be a measurable gwﬁé;"zrrgﬂhtmbtﬁﬁgxfafgjﬂﬁon of the
unit inferval into itself. O.MQ?V N Rechard [1] has studied the
transformation T, of Lt (O\{}.into itself defined by

L“I"E de = f 1) fdw
For reasons tha:t:ﬁglréﬂ appear later, this might be called the
Frobenius—Pe;Pq’ta\.:tfansform corresponding to /. It can be shown
that the tramsformation T, has a ponnegative invariant function
lz) such-that
4 \"4

\:

(where N is the subset of (0, 1) on which p vanishes) if and
only if the set functions m[f~*{4)} are uniformly absolutely
continuous with respect to the Lebesgue measure #2. Under these
circumstances, for every interval (a, &) on (0, 1) and for almost
every x, y denoting the characteristic function,

Limsm[f*(N)I =10

n—00
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. 1 2

lin 3 100 [P (@)

n—s00 i=0

exists, and (if f is metrically transitive) is equal to [} ude,
For example, il g(z) is the broken-line function of Secticn 2,

the transformation 7, is defined by

T &) = i (%) - $E(1 — 3a) \ N\

and the function u(z) is identically 1. From this it folloﬁrs that if
flx) is the parabolic function f{z} = 4x(1 — ), for which the
transformation 7, is \

T,6() — Ut/ (1 —2) {E[H{(1— v/(1—2))] +.~\s§;(1+ V=)
then the corresponding function p(z) is 5 given by

wlx) = dlde [2/n sin +/x] :\I;n Vel —z

These remarks suggest the fo]lowmg questlon If a transformation
]‘(;z:) of the unit intcrval into itself is defined by a sufficiently

“simple’’ function (e.g., a brok@n line function or a polynomial)
whose graph does not cross<{he line ¥ = & with a slope in absolute
value less than 1, d0&¥) %Hréa%légi‘%% H8ifg F-P. transform have
a nontrivial 1nvar1an1{fhnct10n? It is not even known if this is
true for every tran\fbrmfitlon of the form

a& f(x) = 2, 0

7 M= @-a) + 26— 1, }

where 0\< @ < 4. (For @ =} this is easily shown to be the
case. }

The' F.-P. transform correspouding to f(x) can be thought of

‘9\5 Sthe continuous analogue of the following transformation defined

on the space of step functions on (0. 1). Let the unit interval

be divided into # equal nonoverlapping subintervals vde -y

and define #,; as that fraction of interval 7 which is mapped into
interval ¢ by f{(x). That is,

@y = il L)L)

A A

A 1A
— g

x
X

If now
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oule) = 3 Coxr (@)

=1
is a step function defined on the intervals I, then we define
the transiormed function
Tho.@) = 2 Cixr (@)

=1

T
' &
€y = 2 g C;
i=1

That is the vector of coefficients (C}) is just the result of oper;a{iﬁg\
on the vector (C,;) with the matrix a,. g >

I A and B are two subsets of (0, 1) each consisting ok a)finite
number of intervals I; and if f~7(4) = B, then R4

J-A T,odx = jﬂadx

where

N

The matrix a,; has its largest eigenvalue qua\l to 1 and a cor-
responding nonnegative eigenvector (C . ywhich can be regarded
as defining a step function @,(x} that .1s invariant under the
transformation T ,. We conjecture that;c if the F.-P. transformation
T, has a nonnegative invariant igﬂﬁétic&g “u(ﬁ , then the invariant
step functions @, (x) converge {o wie) i L 10, 1) 475 the number
of subdivisions of (0, 1), pecomes infinite.

Under fairly weak resttictions on the matrix (a;,) {e.g., if some
power (a;)* contains{only positive elements), the theorem of
Frobenius-Perron asserts that the invariant step function @,()
is the limit, a,g'g'\'becomes infinite, of the sequence of iterates
T o, (x), whe 6.5, (%) is any nonnegative step function not iden-
tically zero\' i)oes a similar result hold for the general continuous
F.-P. trasisform? That is, if §(z) = 0 is not identically zero, does
the qu;dence of iterates 7%&(x) converge in L'(0, 1) to w{x)?
Computational evidence for the casc fl@} = 4x(1 — x) and
£{z) = 1 suggests that this is the case.

5. Functions of two variables

The following conjecture of the author has been proved by
Zahorski [1]: for every function f(x) continuous on the unit
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interval (0, 1), there exists a function g(z) analytic on (0, 1}
and a perfect set C on this interval such that f{r) = g(x) for all
2 of C. Is the analogue true in the planc if the functions f{z, %}
and g(z, ¥) are continuous and analytic, respectively, on the unit
square, and if the sct € is required to be a direct product of two
perfect sets?

Let f{»,, ..., %,) be a real-valued continuous function defined
on the “unit cube” 0 =< z;, = 1. Does there exist an arc\in the

cube on which the function is constant? * O\
Consider a continuous function f(z, ¥) of two r€al® variables
which is associative . |

e i, ) = 1 9), 50

for example, z + y, ay, (a2 + »2)%, etc. Wilat further condition
on f guarantees that there exist a finite/mimber of such functions
g, such that every associative continwOus function f is conjugate to
one of these, in the sense that fér’some Liz)

f y) = L¥R(L(@), L))

Thus flz, y) = xywmdﬁ&;hm.)aﬁﬁ-gﬁhy are conjugate under
L(z) = log z for positjgc %, Y.

Obviously, the class)of associative functions of two variables,
if one merely requ}k}s continuity is very large — is it ever true,
perhaps, that bvery continuous transformation of a plane
T:a' =}z, ¥ = glw, y) can be obtained by composing a
finite num;b}r of transformations 7, where f, and g, would be
associgx\\k'ze? Compare the wonderful recent results of Kolmo-
goroffy f1].

AN

g}

\ )

Does there exist a square integrable function j(z) and a measure
preserving transformation 7(x), —o0 < & < oo, such that the
sequence of functions {f{(7T*(z));n=1,2, 3, . . -3 forms a complete
orthogonal set in Hilbert space? (Banach)

6. Measure-preserving transformations

* Nole added in proof: A negative answer follows from recent construc-

tions of R. H. Bing.
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Let the real numbers x = 33,2~ (¢, =0 or 1} on (0, 1)
be represented by the sequences

@)= (o o Agy Oy B3 G gy gy <+ 3= o D bgy bogs By By )
The transformation
T =0o. .., b by by, by, by, ...}

fright shift of one place) is known to be measure preserving.
Is it true that T and its iterate 72 are not conjugate under any
measurable transformation H(x) (ie., T # HT2H-Y)? Moré )
strongly, is it true that T has no measurable square root S{#):
T) = S(SE)? N\

T
S D

7. Relative measure \‘

Does there exist, for every set 4 of measure zelQy say on the
interval), a countably additive mecasure functigq%{, under which
at least all Borel subsets of A are measurable,}aﬁd which hag the
properties . O

1. my(A) = 1; mup) =0, P av.p’c}’int of A,

9. for A o> B o C, my(C) =3tu(B) - mz(C).

In other words we desire a dads 8 Braglibrary f#ins with a
possibility of relativising it ¢ymiformly.”

Suppose that the basicspace is the circumference E of the
anit circle, and m(X)(the Lebesgue measure, which can be
equivalently definedh\as’ '

M N
m@}) — Hm (N + 1)1 X xx (1 (2))
A Noroo p=0

for almos’g‘ja.’}l z, where yy is the characteristic function of the
subsct, X of E and T is any irrational rotation. For B taken as a
Borel&bset of a set 4 of measure zero, when does the limit

lim %;;B(Tv (x)) /ZOXA(T" ()

N0 r=0
exist, and for which subclass does this provide a suitable s, (B)
function?
Another suggestion, due to A. L. Shields, is to consider
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my(B) = Im m(8B,)/m(d,)
e=()

where m is the ordinary Lebesgue measure and B, is the set of
points whose distance from B is less than ¢ {similarly for 4,).

(It is clear a $riord that we shall not establish in this way an
wi 4 for all Borel sets 4 of measure zero with the desired properties
— in fact, for every 4 dcense in the interval the measure would
coincide with the measure of its closure. It would be of igfetest,
however, to construct a class of measure functions mth:[h@ above
properties I and 2 for a sufficiently large class of the Sets 4.}

8. Vitali-Lebesgue and Laplace-Li&pounét}:‘rbeorems

A classical result {the “Vitali-Lebesgue the“o}eﬁ”) in the theory
of functions of a real variable is that, in a sehY of positive measure
m{Z), almost every point p of Z has :d’éﬁsity 1, that is to say,
if I, is any sequence of intervalssall™with midpoint $, whose
lengths m(,) = 0 as # becomes {nfinite, then

lim m(Z,, < BIm(l,) =1

(Compare Saks [1]ﬁ)ww.tibf‘;uﬁibrary,org,jn
One could try to strengthen this theorem by proving a definite
rate of this converge\lif;e to 1. For example, knowing that
@y ;\n(l’,, *Z) — m{l,) = o(m(l,))
can one assexfx more; e.g., is it true that for every ¢ > 0 and
almost cveryp,
O d— s
Onf;:can obviously restrict the set % to the class of G;-sets.
'I\f;Z:,(,IS an open set, then 4, = 0 for all » sufficiently large. For sets
Swhich are b_oth Gg-and F-sets, such a strengthening of the density
theorem might well be possible, even to the extent of estimating,
for any %, the measure of the set of those points of Z for which
lim 4, /fm (L)) < k
A similar investigation is possible in the ergodic theory. Let L
be a measure space (say, the Euclidean cube), 7(p) a measure-
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preserving, metrically-transitive transformation of E onto itself.
The ergodic theorem states that for almost all $, and for cvery
set A of positive measure m{4),

N

iim (V4 17 3 74T 9)) = )
y4{p) being the characteristic function of A (Chapter V1, Sections
2, 4, 7) that 1s,

~ :

dy = %XA(T"(P}) —m{d) - (N + 1) =0o(N + 1) O\

What can one say about dy/(N + 1)¥*? This limit is certaiﬁl\y
zero for some measure-preserving transformations of the ix,ft‘éi‘va].
For example, if 1 (p) is the “shift” transformation of{Section 6
of the present chapter, the “‘central limit theoremi\of Laplace-
Liapounoff applied to the “Rernoulli’”’ case :.Qi,‘the additive
probability theory states that A

dy = O(N + D O
for every & > 0. Can one assert the abb’ve relation for almost all
T{p) of the type postulated? {Condpare Feller [11.)
wwi? dbraulibrary org.in

9. A problem in th“e'\’;salculus of variations

Suppose two segments ar \'gii‘x;en in the plane, each of length one.
One is asked to move ¢he first segment continuously, without
changing its length tolhrake it coincide at the end of the motion
with the second gi.{g’én'intcrval in such a way that the sum of the
lengths of the %o paths described by the end points should be a
minirum. Wikat is the geperal rule for this minimum motion? Ifis
clear from-the Euler-Lagrange equations of the variational prob-
lem thsi&\,‘;lbca.ﬂy, the motion will be a composition of rotations and
translations. (The problem could be stated for two such intervals
given in the 3.dimensional space.) One could require alternately
that instead of the sum, the square root of the sum of the squares of
the lengths described by the end-points should be minimum.

More generally, one could pose an analogous problem of the
“most economical”’ motion given a geometrical object 4 and
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another B congruent to it and requiring the motion from A4 to B to
be such that a sum or integral of the lengths of paths described
by individual points be minimum. This bears a certain relation
to the problem of Monge of “déblais et remblais,” but differs
from it in that we require here rigidity of A4 through the course of
the motion. One motivation behind the consideration of such
questions is that in certain problems of mechanics of continua,.c.g.,
in hydrodynamics the motions that are most prevalent, are singled
out by extremal principles not unlike the above; but ohcourse
operating in a space of infinitely many dimensions. () ’

10. A problem on formal inte_{r}ktion

Let f (%), ..., f,(x) be arbitrary continmbus functions. Docs
there exist a rational function R(z) ccxn:{structed from the f; by
rational operations such that the “ipdéfinite integral”

[ Rz)ba
is not again such a rational {:gli)Bination of the f, and of functions
obtained by superposing the,? (Mazur and Ulam).

We mention this réﬁ%‘er specfa 'qugéstion as a small example
of morc general and interesting problems involving the algebraic
properties of finite(“formal analytic” algorithms. Compare the
paper by L. Bielicybach [1] also of Ritt {1] and, more specifically
for the problams’ of the above type, Kaczmarz-Turowicz [1].

2,
11, g;a\()metical properties of the set of all solutions
\ of certain equations

~The class of all solutions of a linear differential equation forms
“a/dinear manifold in function space. We think here of functions
satisfying the equation and given boundary conditions as points in
the space of all such continuous and differentiable functions. What
can onc say about the geometric properties of the set of solutions of
a differential equation which is guadratic in the unknown function
and its derivatives? If the equation is of the type Qy, ¥} = 0,
where Q is a positive-definite quadratic form, the set of solutions
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has the property: given any % solutions, no other solution lies
inside the simplex formed in function space with these % solutions
as vertices. In other words, the manifold of solutions lies on an
intersection of convex (“ellipsoidal”’) surfaces. Can one assert
that the manifold M of solutions of an algebraic differential
equation is formed by the intersection of (possibly infinitely many)
cylinders, each of which is erected over a finite dimensional

algebraic manifold A,? That is to say O\
A ¢
M=(A1><El)-(Aszg)...(A,-xE,,)... \\
AN/
where the A, are as above, E; are linear, infinitely dimensigi}aﬂ
hyperspaces in the function space. AN
‘& ¥
A
PN S {'
A\
’::}.{a
A whw dbraulibrary .org.in
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CHAPTER VI
Physical Systems

1. Generating functions and multiplicative systems

Let us consider a system of particles of ¢ distinct kinds sch
that a particle of type ¢, upon transformation, has a given prSh-
ability $,(3; f1. - - -, 74) of producing j, =+ ... + 7, new particles,
i; of type i. The probability of a particular populatien{y;, - . . 74)
in the &th generation of progeny from a single pa{ticle of type ¢
is given by the coefficient p, (i; 7y, - . -, §,) of thefreduct #ft . . . &}t
in the kth iterate of the generating transﬁoif%’ation ¥ = Gx):

2, = i@y -« 2y) = 3 Bali5 a2

This theorem on iteration of generating functions allows one to

calculate the first moments of the Mstiibutions.by Jauffiptication
of the matrices whose terms a.rg\t‘he first partial derivatives of the

g, evaluated at %, = 2, = \’: x, = 1. Higher moments can be

computed also, but the ‘e%ressions become increasingly com-

plicated. 72N

Unfortunately, it i§ yery difficult to obtain precise information
about the behavier‘of these coefficients except in the simplest
cases. If only gne type of particle is involved, one can explicitly
study the i,E@*—?ittCS of a generating function of the type

@ ) gle) = (az + b)/(cx + 4)
where the a, b, ¢, 4 are chosen so that the coefficients of the power
series for g{z) are nonnegative and have sum unity. The iterates
are easy to compute since iteration of g{z) leads to functions of

the same form. Analogously the transformation
;= (T a2y + 0/ (Z e + &)

may scrve for systems of ¢ types of particles. The question now
83
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arises whether therc exist groups (or semi-groups) of specific trans-
formations in the #dimensional space with more parameters than
are available for the mappings of the above type which, when
developed in powcr series, can be considered as generating trans-
formations (i.e., coefficients of g, nonnegative and with sum = 1}?
This would allow a greater variety of transformations whose
iterates could be obtained in closed form. ~

The expected number of particles of type j in gengration &
from one particle of type ¢ is given by the number in the’th row
and fth column of the kth power J* of the Jacobia,ﬁ\ of G{z} at
z = (1, 1,...,1). The moment matrix J, when positive, has a
unique positive eigenvector v of norm 1 (a thedtém of Frobenius-
Perron} and for “supercritical” systems, i#{fhay be shown that
“almost all”’ genealogies terminate in death or approach, ratio-
wise, the vector v, in the sense of a natifal measure defined in the
space of genealogies. This statemeht )constitutes an analogue of
the strong law of large numbers, for the “case of Bernoulli” for
multiplicative processes (cf. Everett, Ulam [2, 3]). These results,
however, represent only a firgt step in the theory of such processes.
Tt would be importif¥ HBRMbENHOTEL analogue of the central
limit thcorem. What @ve the asymptotic properties of such a
process if the bas'c{ét&babﬂities P4 7, -« §¢) are not constant
in time, but change'in a specified way either explicitly in time or
dependent uRo\Ilithe existing population? If the limit of the product
of the ]af:qbians of the generating transformations G,, Gy, - . -
exists, does’the population approach the corresponding vector v
or dle%t with probability 1?

The reader will find several problems on multiplicative systems

y ~igﬁ;\tﬁe papers referred to above. These are concerned with the

iteration of generating transformations given by polynomials or
power series with nonnegative coeificients in # variables and the
number of particles of each type present in the Akth generation.
The problem of total progeny from the first to the kth gencration
and of systems with source may be so studied. The behavior of
the coefficients of the Ath iterate of such transformations has not
been determined. (See also Bellman and Harris [1].)
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fa. Examples of mathematical problems suggested by
biclogical schemaia

The combinatorial complexities and analytical questions sug-
gested by problems of genetics and by problems of structure of
organic materials present features of purely mathematical interest.
The well-known work of Volterra [1] on the struggle for survival
and the subsequent work of W. Feller [2] dealing with certain sys-
tems of quadratic total differential equations contained important ¢\
results on special nonlinear systems. N\

We shall mention briefly some related problems, leading alsgj;p‘a
system of infinitely many nonlinear differential equationshalso
suggested by biclogical situations -— of course treated, .ip.'an ex-
tremely simplified and schematized way.

Imagine a system of IV particles which reproducgixbd‘iscrete units
of time (generations). In the simplest versiqu.assume that the
reproduction is asexual. Fach of these particles possesses an index
% denoting the number of its ”chara.ctexi%ii:,s.” This number may
increase in time due to mutations occurmng at random at a fixed
rate in the population. We assumeandpanaBtage.dfy Acquiring
additional characteristics consideréd to be improvements leading
to higher probability for survivab of an individual. Specifically,
there is a probability = < ¥ for each individual to acquire an
additional improvement in the course of one generation — «* being
the probability of acquisihg in onc generation two improvements,
ete. Another constant/p defines for an individual the differential
advantage in its s vival. In the simplest scheme one may assume
that the differenitial advantage for survival is proportional to the
number of tliese improvements—that is to say, if one particle has
an index-f.and the other one k-7, then the relative chance of sur-
vival of the richer individual over the poorer one is proportional to
i. In a numerical treatment of the problem one may assume the
population to be always normalized to a constant number ¥V ‘. The.
fist problem concerns the number z; of the particles with ¢
advantages as a function of Hime in its dependence on the two
constants « and f. A simple system of equation would be:
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i
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Here the species k is the first one of any importance that is present
in the generation and [ is the last. One 'I’na); assume that in each
generation the % is determined by making it equal to the index of
the first number in the sequence, {z,}; ‘which is equal to or greater
than 1 and the /is made equal tq g’plus the index of the last number
of the sequence, which is = T he numerical investigation made
by C. Luchr and the’ W AN 1% Mowing results. The solu-
tion of the system seems 4oapproach a steady state in the following
sense: the average i déx’i of the population existing in one genera-
tion increases anth’y with time, and the distribution of the ¢
around the 7 appéats to approximate the Gaussian. The parameters
of this nom}fiidistribution depend in a simple fashion on the con-
stants e« dnd” 8.
A p;gﬁem next in complexity, but still extremely simplified
.comliai'ed to the real biological situations involves bisexual re-
production — that is to say, production of particles by pairs of
}aarticles. The equations will now be essentially nonlinear. One
should assume that the advantageous characteristics acquired by
mutations can be transmitted from either parent to the offspring
in the next generation. We may assume again that the total
population is constant by normalizing it and, in the simplest case,
-assume only two kinds of “genes”. The advantage for survival {or
in the increase of the number of offspring) depends, say, on the sum
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of the number of the improvement genes of each kind. If the off-
spring can acquire indcpendently the genes from each parent,
obtaining certainly those that are present in both and each gene
which is present in one parent only with the probability equal to %
the equations could be
Ty = Yl 2 Yis

where

s = — oy &2 50 T2, B+ § —min (¢ +7}]2,,

+ LN 23 78 5 @ un
where the choice of
B = 1/20-D ( (k—0) ) O
i — min (%, {)

corresponds to our rule on the inheritance of the extra génes. A
numerical study of this system was undertaken by P. Stéﬁh and the
author. Again a steady state distribution secms to egtd blish itseli
with the rather curious property that only a fey/ gpécies with ad-
joining indices co-exist in any one generation. Rhespeed with which
the average number of “‘improvements” ingcredses is constant.

This mathematical formulation.is stil}.féry naive and too simple
as compared to the biological rea&jm_{fghaq,ﬁmy;ﬁ]‘%.égﬁnkmds of
genes {or phenotypes) is much gréater than 2. Also one should
study such systems with more y€alistic rules, i.e;, the distinction
between dominant and rece s'@e’ genes and the Mendelian proper-
ties. The mathematical pr(%erties of solutions of such systems
seem to be akin to tl}q’s’é “of the phenomena encountered in the
study of nonlinear gystems describing a vibrating string, etc.,
mentioned in Chapfer VII, Section 8.

P. Stein succdeded in proving the following:

Consider t\he quadratic transformation in #-space given by the
quadrati€\perms alone:

:17;:, = Z Z }’iﬁw y;nﬂ Lo Lpn

T
L 3

assume
2y =0, 2 %; = L

About the y’s assume only:

N ;
M 0 only for k=i=l Xy =1 and Y iy8 = (B + )2
i=1 i=k

¢\
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Under thesc assumptions the only fixed points of the transforma-
tion are of the form _ '
@ = (14+7)% 44, = 7/ (1+7)2% 2400 = {141 '
all other z,, being 0, ris a parameter, 0 = = = 0. The iteration of
the transformation, starting from any point, converges to one of
these fixed points; the valuc of = being computable from the initial
conditions. )

A still different class of problems, leading to a study of noglifear
(quadratic) transformations and their iterations originates from
the following schema: imagine a large number of individuals {or
particles) present in a given generation. Suppose these combine in
pairs and produce, in the next generation, neyv?{aarficles, parents
dying after procreating the new ones. Suppose”’tfht\z originai particles
are each one of IV different types. A rule is‘no{v given for the type
i{t =12, ..., N) produced by the n:;a’tﬁfg of individuals of type
4 and k. In a random mating of partieles the cxpected value of the
fraction , of particles of a given tyypé in the next generation will
be a quadratic function of the %o fractions x; and #,. The equa-
tions would be 3

»

wowwr.d bna:t}] ft; rary.org.in
N A\ g

r v
ok . .
*;, = %'P’f Tp &y 1—=1,._ N

By
where, if we assmﬁ{\i:hat each pair produces exactly two new par-
ticles and specifiCally the rule of defining the type is that the y’s
are either 0°s, a1’ 1's, we may insist that for any index ¢ not all y}'
vanish and@the system of equations really specializes to a form
where each term in the product (@, 4+ 25 + .. I a&y)? will appear
in eg{q&iy one row of the set of equations. For further simplifica-
'tig:m: Wwe may assume that the cross-products appear with the
\’;‘\?ctoz 2 (commutativity). So as an example we could have with

@y = af + Xy + 2§ + 207, + 2y, - 20637,

Ty = 2y 2y + 2,1y

g = 2w, 7,

‘.8
Iy == 3
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A study of all such transformations was made by P. Stein and
the author in case N = 3. There are 97 nonequivalent possible
“genetic’” rules of this kind and all 97 corresponding transforma-
tions of this type were studied with regard to the properties of
iterated sequences of each transformation. In some cases, starting
with an arbitrary initial distribution (nondegenerate) one com-
verges to a fixed point; that is to say, the ratios of the numbers of
individuals of each type stabilize. In other cases the points seem to
approach an oscillation between a. finite number of fixed ratios.

In every case, for N — 3 the first means, in time, of the ratios zg\.

exist for almost every point, it appcars. The ergodic and asynips
totic properties of the iterates of such transformations for &' 3
are unknown in general {see P. Stein and the author, [2{)(’

2. Infinities in physics

The simplest problems involving an actual ip@in\lty of particles
in distributions of matter appeat already ih.classical mechanics.
A discussion of these will permit us to, j.ﬁtrbduce more general
schemes which may possibly be useful i’ $uture physical theories.

Strictly speaking, one has to cgﬁé;ider a true infinity in the
distribution of matter in all propléfitsibe aliiphysics of continua.
In the classical treatment, ie@ Ysually given in textbooks of
hydrodynamics and field ’\t\‘iiébry, this is, however, not really
essential, and in most gheories serves merely as a convenient
limiting model of finité\sjf:é.tems enabling one fo use the algorithms
of the calculus. THe tisual introduction of the continuum leaves
much to be dié\i]”s\sféd and examined critically. The derivation of
the equations of motion for {luids, for example, runs somewhat
as fo]lqyy.s:&’o'rle imagines a very large number N of particles,
say wi'{l)‘e"qual masses, constituting a net approximating the con-
tinuam which is to be studied. The forces between these particles
are assumed to be given, and one writes the Lagrange cquations
for the motion of the N particies. The finite system of ordinary
differential equations “becomes’’ in the limit N = oo oné of
several partial differential equations. The Newtonian laws of
conservation of energy and momentum ate scemingly correctly

N

A
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formulated ior the limiting case of the continuum. There appears
at once, however, at least one possible abjection to the unrestricted
validity of this formulation. For the very fact that the limiting
equations imply tacitly the continuity and differentiability of the
functions describing the motion of the continuum seems to impose
various consiraints on the possible motions of the approximating
finite systems. Indeed, at any stage of the limiting process, it
is quite conceivable for two neighboring particles to be moviidg in
opposite directions with a relative velocity which need: ot tend
to zero as N becomes infinite, whereas the continuity iﬁlposed on
the solution of the limiting continuum excludes such, 4 situation,
There are, therefore, constraints on the class of possible motions
which are not explicitly recognized. This médis that a viscosity
or other type of constraint must be introdueed initially, singling
out the “smooth’” motions from the totdlity of all possible ones.
In some cases, therefore, the usual dilfﬁf{l%ntial equations of hydre-
dynamics may constitute a misleading description of the physical
process. N\

On the other hand, the ngmé‘rical solution of such a system of
partial differential eq&;@,@q{ﬁ%ﬁﬁg[y}e&sgb@ ise of a model of finitely
many points approximatiig the continuum. The corresponding
finite difference schgzm’é: must be carefully designed fo insure not
only that the djstar}&s} between neighboring points are sufficiently
small, but that sarfious numerical stability conditions, e.g., so-
called “Courant,conditions,” hold. This necessity shows again a
number of jn}ﬁifcit assumptions about the finite model approximat-
ing the ni&'ch’anical system. The question whether the limit of the
solut%oii}, of the approximating equations is in fact the solution
of the limiting equation is, in the general case, openl. The statement
fs_probably false in the most general case.

Indeed, it may be that, in some future physical theories, the
Euclidean continuum presently used as the exclusive model for
distributions of matter will cease to be the sole convenient model
for reality. It secms possible that in some cases spaces with the
topology of the Cantor (perfect, nowhere dense) sets might serve
to represent distributions of matter or energy.
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3. Motion of infinite systems, randomly distributed *

We shall propose a few very simple mathematical questions
illustrating the problems which will arise in the study of systems
of this sort. They involve infinite assemblies of mass points with
interactions assumed to exist betwecn them. Such assemblies,
while not finite, will no# correspond to the continua which are
presently employed in physical theories.

Suppose that we distribute 2 set of equal masses m on a line,
on the integer points 0, +1, 4+2,... by a probability scheme,\/)
placing a mass # = 1 on each point # with probability I and leaving
the point vacant with this probability. Since there is an obvious
one-one correspondence between all possible initial d.ig{ributions
and teal numbers on (0, 1} in dyadic expansion, W ¢an have a
measure, e.g., the ordinary Lebesgue mcasure, in the 3¢t of distribu-
tions, and in what follows, the phrase “almost AY is understood
in the sense of this measure. Let us further Hssume that betwecn
every two mass points there exists an attractive force inversely
proportional to the square of their disg’gijui&e. Obviously the total
force on each particle is well deﬁned,}’jthé series of Inverse squares
of integers converging absolutely, “Wher. dhedllpesiylatg @lso that
colliding masscs remain forevgn{ogether, forming a single particle
of mass equal to the sum ok{héir masses, and that momentum is
conserved under collision,

For times £ > 0, the(Behavior of the system is described by an
infinite system ofj\‘}léwtonian equations, We might remark
parenthetically, {hat the various formulations of the principles
of mechanics, aibequivalent for finite systems, become in our case
quite distin{::’r,Z; The total mass of our system being infinite, one
has to diS¢ reformulations of the usual variational principles, or
even th}Lagra.ngian equations, toarrive at unequivocal statements.

The questions that arise concern the asymptotic behavior of
such systems after long times. They can be put in this form. What
i the measure of the set of initial distributions which will behave
asymptotically in a specified fashion? Some such questions have

* The next three sections follow the author’'s article [2.
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been answered. Many others suggest themselves (ci. Metropolis,
Ulam [1]). .

The situation becomes perhaps more “physicaily” interesting
in two and three dimensions. The problem is still mathematically
well defined. One can state that for almost every initial distribu-
tion it is true that, for every constituent mass point, the net force
vector ewists if the component forces are summmed over sucgessive
- spherical shells about the point; that is to say, the limit af\these
forces exists for almost all initial distributions. Howevez:,‘co]hmon
must now be understood in the sense of grawta.ﬁmﬁal capture,
i.e., the “colliding’’ points remain within some gpecified distance
of cach other for all time. Is it truc that the &eries of forces on
all masses of a distribution remain weakdy convergent for all
t > 0 if this condition obtains initially? The initial average
density, in the obvious sense, of our system of particles, randomly
distributcd as they are at £ = 0 isM¥5) L. Is it true that almost alt
distributions retain this density fot all time?

In the case of one dimension; there will be a tendency toward the
formation of successively 1a‘rger condensations. Is the same true
in higher dimensions.ifdbgaisendengation we understand a sub-
system of points whosé mutual distances all remain forever
bounded? Will ahqg%t’every distribution show a tendency toward
the formation of “galaxies’’, “‘super-galaxies,” etc.?

What force, laws F(r), or equivalently, what potential functicns
V (r) have Qle property that, for almost every initial configuration,
all forces,remain well defined for all time under the ensuing
motigng; “calculated from Newton’s equations and assuming our
coniyentions for collision?
~Analogous but more difficult problems arise if we deal with
countable systems, again randomly distributed initially but not
restricted to the set of lattice points. The following general
properties of our one-dimensional initially randomly distributed
infinite systems are established very easily:

1. The masses appearing in the course of time will be vo-
bounded. In other words, for almost every initial condition of our
system there will exist for every M a time ¢ such that a mass
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greater than M will appear after this time.

2. There will always exist single particles. In other words,
for almost every system and for every ¢ there will exist in the
system points with unit mass.

3. The asymptotic density of our system remains constant
and equal to the original density. We define the asymptotic
density as follows. Consider the totality of particles contained in
an interval from —N to -+N and denote by My the total mass of

all particles in this interval. The limy_. My 2N shall be calledA
the asymptotic density if it exists. With our initial masses cquil

to 1, and the random placing of these masses on integer oints,
this limit (from Bernoulli’s theorem} is equal to 3. It is~§as§3’z to
see that this limit will exist and be equal to § for all . This¥'simply
due to the fact that, given any {, the displacement Jf exch particle
will be bounded. If we take a sufficiently large jiiterval, the flux
across its ends will constitute an arbitrarily\small fraction of
the total number of particles and our assértion follows.

4. Arbitrarily large “holes” will appeak in our system; that is,
for almost every system and for all & there will exist a time ¢ so
that there will be infinitely many W%S: Jpoints PgPﬁE%E?fl by inter-
vals larger than d. Moreover, ot all greater times these long
empty intervals will continug™o exist.

These assertions are casy\te prove in onc dimension. In two or
more dimensions, we shalpnot have, in general, collision between
point masses and weWotld again have to define captures, that is
to say, formation ;{f;}iéuble or multiple systems. The correspending
theorems on the.existence of stable or semi-stable captures seem
much harder. o prove. An easier way to deal with an analogue of
our sys’;gm{'wbuld be to give each point a finite size and then
considéx_gertain collisions as completely inclastic and leading to
formations of larger masses. Property 2 and property 3 should
then be easy to prove.

More interesting are the quantitative properties of such systems.
For example, it would be interesting to calculate, even for systems
in one dimension, the average mass of particles in our infinite
collection at a given time ¢, and to determine the distribution of

QY
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masses as a function of time. Another interesting question concerns
the distribution of velocities of our particles as a function of
time. (To define a meaningful average velocity one would have to
introduce a cut-off in the distance between two particles, which
approach each other, just before a collision; in the system consisting
of mathematical points, these velocities become arbitrarily large
during the collision process.) If we define a cut-off distance, then
the average velocity of our particles will have a meaning fos ali ¢
and the question arises: what is the “temperature” of theSystem as
a function of time? O
In order to study thesc and other similar qucsfnibns, a series of
experiments were performed on a computing machine by John
Pasta and the author. An attempt was madedo imitate the infinite
system by a finite one composed of a greit number of masscs
placed on points of a regular subdivision of an interval with 2
decision, for placing or not placing ninss points in successive posi-
tions, made by “throwing a die.” IAdrder to “approximate’” an in-
finite system somewhat realistically, one has to imagine the two
end points of the interval onswhich the points are located as coin-
ciding; that is to say,wedhmdibrfinitegystem of points on the cir-
cumference of a circle @h& periodic structure, This attenuates the
end effects. It is cleaf fhat such a finite system will imitate an in-
finite one only for aWimited time, Given a finite system, it is certain
that it will ultimately collapse to a single point, whereas in the in-
finite case, w‘fe.\saw that the asymptotic density will remain con-
stant for, a;ll\times. Therefore, in interpreting the results of a cal-
culatigx}inéde for a finite system, one has to carry them only up to
a V?.:.ﬁlf: T of time when the system still contains “‘many” points. In
’Qf(:_‘:[Ef to make a rigorous analysis, for the study of any given func-
tional of the distribution of distances, masses, velocities, ctc., of
our system, one would have to give @ prior¢ inequalities for this 7
as g function of ¥ and a § > 0; that is to say, with only a finite
system of N points, we restrict T so that the functional of the
system in which one is interested, computed up to time T, will
differ in value by less than § from the value of this functional
for an infinite system (i.e., for almost all infinite systems). Many
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finite systems were computed (that is fo say we started with many
distributions of mass points given by our initial random procedure
and in each case the subscquent motions were calculated with
the hope of obtaining heuristic results on some functionals of such
systems). The number of points initially taken was of the order
- of 1,000, Among the guantities calculated were the distribution
of masses at any time £, the distribution of distances, etc. We shall
indicate here merely very briefly some of the qualitative facts
about them.

(a) The average mass of a particle appears to increase linearty(Oy
with time. _ O

{b} There is a suspicion, at least, that if one considersithe
distribution of masses of particles existing at time { in fHe units
of the average mass at that time, this distribution tendsyto a fixed
function. In other words a steady state may Qst\ab]ish itself.

{c) A quantity which was called hierarchyow,}s'studied. This
s defined as follows by induction. The origittal particles have by
definition a hierarchy rank zcro. Whe:n’t,xir@' particles of rank
and # collide, they form a particle wh,qlfsé “hierarchy rank is equal
to the greater of the two numbers %, ’n(;if m = n. In case m =7,
the rank of the new particle is, mwiﬁﬁl.bfﬂigli’i‘i’d[é’)@fg@i%s an idea
of the degree or hierarchy i@ii\conglomeration as distinguished
from a mere increase of m & by accretion. The average hierarchy
was increasing more stowly than the average mass, but presumably
tends to infinity fot\an infinite systen.

(@} The averggﬁé;kinetic energy was studied as a function of
time. We ha,ve\Qs}aa in the computation 2 cut-off in the distance
of approach iI’l\ order to eliminate the arbitrarily high velocity
just beforescollapse. The shape of this function is not known, but
Citis ob:"oﬁs that this average energy increases initially and then
starts decreasing again, which, of course, 18 due to the fact that our
system altimately will end up as one big particle at rest. Presum-
ably, our {inite systems only imitate the infinite one up to the time
when this average energy stops increasing. Nothing conclusive as
yet, therefore, can be said about the change of “temperature’’ It

time.
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It should be pointed out here that the type of distribution {3
la Bernoulli) which we have introduced in our numerical work
could equally well be chosen differently. For example, we could
assume that there is a fixed probability « - dz of finding a unit
mass in the interval da. That is to say, the initial randomness
could be chosen a la Poisson. It is easy to see that the convergence
of the force on each particle of the system would be cqually vahd
- for almost all initial conditions with this set-up.

One could postulate a finite interval with infinitely mafippoints
of various masses distributed in this interval at time%>="0 by a
given random process and then discuss the ensying ‘motions.

One could assume, of course, that not only thenitial positions
‘of our points on the line or in space arc given A random, but also
that there exist, at time ¢ == 0, initial velogities of each of these
points, given in a random fashion, say Wlth\a Maxwellian distribu-
tion. N\

4. Infinite systems$, in equilibriam

One of the qualitative differ'enées in the behavier of finite and
of infinite systems iswthdbrafsbsteyorgliich has infinitely many
‘mass points may exist ip‘@'state of static equilibrium, i.e., at rest,
even when the forces between any two points are attractive. For
example, assuming that any two points attract each other, the
resultant force anjeach point may be still equal to 0: One can
find a countab}y infinite set of point masses m,, m,, ... and 2
set of 1n1tlal\p051t10ns ¥y, ¥, ... on the unit interval such that

2;’1\ ; =1, (b} the masses attract cach other according
to the mverse square law, (¢} the whole system is in static equili-
hnmn that 1s to say, the net force on each mass point exists and

Nis/zero. This equilibrium will not be stable, that is arbitrarily

small displacements of such initial positions may lead to motions
of the system which will make it collapse or, in any case, lead to
configurations which with time increasing to infinity will diffcr
more and more from the initial position.

It is easy to find distributions of such mass points with attracting
forces like the above so that the initial motions will be expanding!
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Tt would be of interest to find two “truly”’ three-dimensional
infinite systems of points with total mass finite and so located
that the net force on each point would be zero. One would like such -
systems to be of more than one dimension in the following sense.
The set of all possible directions, j.e., angles between pairs of
points should be dense on the circumfercnee unit circle or — in a
three-dimensional distribution of points — the set of directions
between pairs of points should be dense on a unit sphere.

Can systems of the above sort be found which would be even
dense on an interval or in a region of the plane or space? \ »

5. Random Cantor sets (,.}:'

We have discussed an infinite but countable system gkn‘iaterial
points subject to forces acting on each of them. Wwa, shall now
outline some models of mass distributions which combine a discrete
character with certain properties of a contin 4bl. One way fo
establish a rather simple distribution of this s0ct would be through
the following process: Imagine a point with W'mass equal to unity,
located in the middle of the interval (& ). This mass point can
now, either, with a probability _gemain forever in its original
position, or, with a grobabi]ity m]w:‘ﬁ{ \{7‘&% ull,ll%lf)al'{? o two parts,
each of mass 3, which will erocated in the positions } and £,
respectively. If thelatter e\i\e\ﬁtﬂality has occurred, we shall assume
again that each of the (two masses cal, independently, just as
before, either stay what it is, or each can independently split into
‘two masses (equa¥ 7 each) which will be located at % and # for
the first point,\irﬁ\g:'and % for the second point. This process is to
continue indefinitely. We imagine that each of the points can
split intog tivo equal ones which will then be located to the left
and n‘gl;.t “of it, with a probability #., oF stay “‘dead” forever.
We have thus a branching or multiplicative process which will
define a possible distribution of masses ON dyadically rational
points.of the interval. The process 15 defined by the two constants
by Po- P2 should equal 1 and p, = 0, we would have a certainty
of splitting every time and the process would lead to all rational
binarjes, each having, in the limit, mass zero. The closure of our
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set would be the full continuum of real numbers between zero
and 1. If $, is less than 1, we shall get as a result of our continuing
branching process a countable set of points whose closure will be,
with probability 1, a nowhere dense set consisting of some isolated
points and a perfect nowhere dense set of the kind defined by
Cantor. There are three cases to distinguish, a subcritical, just
critical, and supercritical system. In our simple set-up, these
correspond to the cases p, << §, =1, >1, respectively. In His Jast
case there is a finite probability for the process never eddiig and
as a result, in addition to having a finite collection of §oints which
are isolated, we shall obtain a perfect set on the intgrval as a closure
of the “unending” part of the process. We have/fo'make the sense
in which we speak of a result ‘“‘of one such pro}re},s" more precise.
What is meant, of course, is that one considers all possible out-
comes of such a branching process. Thefe €xists a measure in the
space of all possible branching proteésses defined in a rather
natural way (cf. Everett, Ulam [3]) When we speak of the process
leading with probability 1 to a sétwith given properties, we mean
that the suhset of the set of alliprocesses with these properties has
measure 1 in the ng}%{ﬁibn—w&ﬂﬁenprocesses

One can Iook upon #he sets of points obtained by the above
construction as describing “‘virtual positions of a physical object,”
or consider the spe}&.\itself as being a collection of virtual symbols
generated in sych)a way. These then will not, in general, form
Euclidean coptimua. Neither will they consist of a discrete set of
points. It ig‘bﬁvious that an analogous procedure can be effected
in spacgs.ef dimensions higher than one. One could, for example,
perfarm our branching independently in all three dimensions, or
onecould imagine the following single process: A particle with
mass 1, located at the center of a unit sphere splits with probability
#3 into two particles, each with mass % and located on the opposite
ends of an interval with length «,. The direction of this interval
can be obtained by a random process, say with isotropic distribu-
tion in space. Each of the ends with mass equal } can again be
subject to the same splitting possibility, say, with the same
probability #, independently, and then split into two particles,
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cach with mass equal %, located at the ends of an isotropically
chosen interval of length «,. If the process continues indefinitely,
we shall obtain a three-dimcnsional analoguc of the sets above.
(It might be of interest to add herc that it is by no means easy
to determine the topological character of the resulting set. It is
known since Antoine [1] that some perfect nowhere dense sets
in 3-space are equivalent to sets located in one dimension under a
homeomorphism of the whole three-dimensional space and others
are not. The question which of the two is more likely under our ()
process is not immediately answered.) N\
The above special way of constructing a space of symbolsy 6
correspond to a model of a physical situation is perhaps the siplést
one of its kind and, so to say, applies to the “configuratjoil.épace”
of a particle. An analogous construction could be thowght of as
proceeding in the phase space. Not merely the Rosx\ifms, but the
momenta or vclocities of a particle could be genetated by a process
like the above, leading to a Cantor set structus® of all “possible”
values of the physical quantities in which we are interested. In the
sequel we restrict ourselves to the cq::l‘g'igilra.tion space alone. In
addition, we shall confine oursckigzﬁ;‘pj%%mbglﬁs?ig@éﬁ that is to
say, nonrelativistic and nonquagfiim theoretical features of such
models. Any pretended attqmp’fx\to take the implications of such
constructions for physical qn 1s more seriously would, of course,
have to involve such comstructions in Minkowski-Lorentz spaces.
We mentioned above-some of the obvious properties of sets
obtained by our bria}l&hing process, €.g., that the sets wilt be,
with probability\l';’nowhere dense. To obtain more precise in-
formation abelit the nature of these sets scems difficult. Again
explorator;y;ﬁﬁmcrical work seemed of some value and a serics of
computatiens on an electronic machine was undertaken as follows.
Starting with the original point in the middle of the interval,
the process was continued by the use of random numbers. That is
to say, a great number of finite sets was determined, the process
being stopped each time after a certain number of “generations.”
Given the probabilities p,, p, one may obtain a number N of
sets, produced by the splitting process, sufficient for a statistical
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study. If the number of generations & for the splitting process is
kept constant, we shall obtain a variable number of points in
the set. One can then compute the average value of any given
functional of such a set. (The intcgration in the space of all pos-
sible branching processes is replaced by averaging on the N sefs
actually produced. One can easily justify such averaging as an
approximation to integration for various functionals). The func-
tionals studied werc as follows. R

1. Given a sct of mass points at generation time & ‘efle can
compute its moment on inertia I. (The center of gr,ai.ri?y of each
system, as is obvious from its definition, is located ' the original
position at 4, since our splitting preserves th center of mass.)
If we average the value of the moment of idertia over all N sets
which we have manufactured, we obtain apyapproximate value of
the average moment of inertia of th infinite set.

2. Imagine that any two points i Jour set attract each other
with a force proportional to the Ir;g,séeé and inverscly to the square
of the distance. There arises theSquestion: What is the value of
the ‘‘gravitational sclf-energj{”‘?" Here again, if we compute this
quantity for each wWivwulbiVubibteramdetake the average, we shall
get an approximation.fohthe average or expected value of this
quantity in our in{{ﬁjte’ process. This value exists in the three-
dimensional caseX

In additioq 0 6btaining the average, one can get a fair idea of
the distributioni of the value of this self-energy, Of course, in
order to\al?c‘ertain it with any accuracy, a very great number N
of sets(would have to be manufactured.

53(? “One could also ask aboat the mutwal attraction of two
Systems of the above sort with # and # points located on an inter-

al of Iength 1, but separated {rom each other, again assuming that
any element of one sct attracts any element of the other set with a
force proportional to the product of the masses and inversely
with the square of the distance.

The motivation for a calculation of quantities like self-energy
is that it is g priori clear that the values of these will be less than
the values for corresponding Euclidean continuum models and
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may have finite valucs in certain systems of our sort when these
latter diverge. One may try to calculate a mass splitting process
more general than the one outlined above. Namely, the prob-
abilities for splitting which we have assumed to be constant from
generation to gencration and from point to peint could be as-
sumed to depend on the existence of another object of the above
sort in proximity to our given system (cf. Chapter VIII Section 7).
Indeed, if we assumed that a function V{z) is given and the
probability of multiplication is proportional to this function, weA

obtain a distribution # as a result of our splitting process which ™

will obey an equation of the type of the Schrédinger qu%ﬁ'on
A+ (E — Ve =0 \\

The process, as defined above, has the unsatisfadfory feature
that it still leaves mathematical points with finitéunasses. If one
wants to insist on all mathematical points‘hjés}ing masses Zero,
the following iteration of our procedure Shwuld be considered:
Let L, denote the first passage to tl;gsﬁlhiit of our process as
defined above. We shall now iterate jtin this fashion: each of the
points which remain Witf.l ﬁnite“rg;%ﬁi a‘};illélmz[li%%grll_ l_ag:r S}illllaject to a
splitting procedure, say with thelame probablhtleg, 1fto two equal
masses buf this time locatedx”o}t the opposite ends of an interval
shorter than the one in the first process by a fixed ratio K. For
example, let K = 11Ta'r :{hen if it happened that the first mass
point located at § Ras’not split during the first process, it will
have a probabi}'ij;)%,\ﬁg of splitting into two masses equal to i,
but located af\positions ) — (135 - (@) and )+ (o) - )
Apgain, for e)’gé.mple, if the point located at § has not split in the
first procéss, let it have probability f, of splitting into two masses
each c?;,ué.lnto 1, and located at (3)— (185)" (%) and (1) + (155 -
1f this continued, we should have a second limiting set L, I,
at the end of this procedure, some points still have finite masses,
we continue, assuming now ancther still smaller ratio R for the
splitting distance and repeat this splitting, obtaining L, and
so on. Now with probability 1, a sequcnce of these processes will
lead o a Cantor-set of points so that at ordinal e? all points

Q!
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will have mass zero and we shall obtain a distribution of density
without finite values at any point.

Another gencralization seems strongly suggested. In the pro-
cesses described, the objects which are obtained by our branching
are still algebraically of thc nature of real numbers. It would
seem that this is too special. The formalism of the new quantum
theory would suggest considering each of the points “mangfac-
tured” as having spinlike properties. That is to say, there‘sheuld

be several kinds, @, #,, ..., 2, of these points. Thls isin fact,
already the case for the brdn(,hmg DrOCEss as we, descrlbed it in
three dimensions. N

In cach of the processcs of the above type\one may consider a
" measure in the space of all their possible olitéomes. This measure
is defined in a natural way by defmm%lt first for the set of all
possible outcomes which have a speci ificd appearance up to the
kth generation for £ = 1, 2, 3, These special sets correspond
to elementary intervals in the Lebesgue measure on the interval.
Their measure is the probal;nhty of the specified special set of
occurrences up to the kth.generatlon One may then extend it,
in the usual way, toalt-dbrswitie BowlTield over these elementary
sets. This construction\has been discussed for our simplest process
L, and for an #- ’F’rgeﬁsional process, that is to say, particles of #
types. Can it bag\generalized to our process of the type L,.? Our
set of all possible outcomes is, after closure, a continuum in which
its own measure can be defined in a natural way. This allows one
to intgﬁt’e functionals of such a set: for example, of the points
atiraghng each other according to a given law, one may define
gravﬁatlonal self-cnergy, etc.; then one can integrate the value
"’Qf..SUCh a Tunction of the set of all possible genealogies or outcomes
in the sense of measure in this space. This way one obtains an
average or expected value of such a quantity.

We repcat that mathematical studics of models of the kind
:suggested above may perhaps be of interest since the development
.of physical theories during the last fow decades suggests a pOs-
sibility of a continuing process of “‘atomization.”” The alternating
vogues for a ““field theory’”” and for the “‘elementary particles”
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points of view present, at a given time, either a topologically
Euclidean continuum, the primitive mathematical entities being
functions of continuous variables, or else a notion of fundamental
particles the “insides” of which are not further analyzed. The
interpretation of these ultimately small units of space evolve
through stages: the atom becomes a nucleus surrounded by
electrons, the nucleus in turn exhibits its inner components of
nucleons, whilc at the present moment the protons and neutrons
may be losing their right to a status of “particles” by exhibiting("),
a definitc substructure. All this, so to say, in the small - - whereas) *
in the direction of the distribution of the physical univcrig‘e\in
the large, such iterative processes also seems to cxish; stars
appear in clusters, the clusters surround galaxies, Fhere exist
clusters of galaxies, i.e., super-galaxics and perhaps one might
see an indication of an infinite hierarchy at the io}her end of the
scale. N\

One might say that neither a quantizatiém bf fields nor a rela-
tivistic quantization of space-time arre§ts’ this tendency of the
successive models of physical reality to replace elementary
particles by systems of more el@mﬁmmﬁguﬂgﬁhngm

It may thercfore be intere fihg to imagine such processes
continuing infinitely and in shrticular to consider the cases where
" the subdivision of mass (or enérgy) goes on forever without leading .
necessarily in the limigyte’a real number system or a Eunclidean
contimum in which the field is defined. On the contrary, in general
these limits will Jed “to scherhas of mass distribution which will
be C-antor—set;hi(é and have the topology of the p-adic rather
than the real numbers. One has to repeat that models which
could evefi remotely claim a physical interest would have to be
constrletéd in space-time rather than in the ordinary space and
in the phase space-and not in configuration space alone. It seems,
also, that a gquantum theoretical viewpoint would have to be
adopted implying in particular that the physical interaction
between two elements at a given stage of the process is of a
“shorter range’’ than that between elements of different stages.

One might note that such a geometrization of physics, if it
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ever takes place, would not consist of merely generalizing the
Euclidean character of the distance in the large which is the
content of Riemannian geometry. Since physical phenomena
seem to radically change their properties in the small, it is clear
that a differentiable metric will never bring out this feature, A
more radical change, even that of local topology, as indicated
above, would be necessary. The increasing recent evidence\for
the frequency of transmutation in properties of what atjeach
stage was considered an elementary particle, and the\multi-
plicative character of the phenomena in thc small foay make it
amusing, at least for a mathematician, to cqm“ider models of

this sort. { ¢ 7

6. Dynamical flow in phase space

A dynamical system of # mass point@ may be represented, in
the well-known fashion, by a singlé{point in the 6x-dimensional
space. The totality of all possible Sditial positions and momenta
will define a set of points in :cl)é: tr-dimensional space — ie., it
the phase space — of the genéf"alized coordinates and momenta.
The change in tim& 8¢ ﬂi’é“ﬁﬁ%f%grﬁﬂﬂ velocitics of the system
defines then a measuré-preserving flow of the phase space into
itself. Mathematic I@Fcﬁk during the last few decades has brought
a rigorous description of some preperties of such transformations;
in particular tlté"érgodic theorems of von Neumann and G. D.
Birkhoff (cf\IH()pf (1], Khinchin [1]) provide a rigorous mathe-
matical feumdation for the ideas of statistical mechanics. One

. also k}}t\ s that, among all possible measure-preserving continuous
ﬂoy&gs;’of a manifold into itself, the ergodic ones, i.e., those which
,alje,,\metrically transitive, form in a certain sense the general case

\(J C. Oxtoby and S. Ulam [1]). These results show that almost
all continuous measure-preserving flows possess the property¥
that the time averages are equal to space averages, but this has
not yet been proved in the general case of actual dynarmical
flows, that is to say, flows defined by differential equations with
given Hamiltonians, In addition, there is a need for further in-
formation still of a qualitative kind about general properties of
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dynamical flows in phase spacc. Onc such property, first defined
and studied by Poincaré, is that of “mixing’’. This involves the
following property, broadly speaking: given any region 4 in phase
space and any other region B, after a sufficiently long time the
measure of the image of the region 4 which is contained in the
region B will bave approximately the value m{A) multiplied
by m(B).

A quantity of great physical interest is the vafe at which mixing
proceeds. This problem is, of course, of interest in an actual
hydrodynamical flow, of a fluid in three-dimensional space. Imqg-\~}
inc that the initial appearance of the flow is quite regular, say
almost laminar, but with a small irregularity superimposed jniﬁally
as a perturbation. As time goes o1, the mofion may bef.QHi‘e more
and more irregular and after sufficiently Jong time ¥ery compli-
cated and turbulent. A

i one should consider the actual {luid ggim;\oximated by a
large number k& of points and their phase spades then the region B
of the phase space whose points correspoi:rd to highly irregular
velocity distributions of the given .ﬂ}}‘eé—djmensional fluid un-
doubtedly occupies a very Jarge pro 'élt‘fj‘.éqn of the total volume of
the entirg phasg space. [t is imqut\gg{u' or HHUBRESF B turbulence
to know something about the~rate at which the set A of points,
each of which correspondsito, ¥mooth or regular velocity distribu-
tions of the actual fluid(tends to penetrate into the much larger
region B of the phase’\sp'ﬁce corresponding to turbulent motions.
‘This question is 91’&0111‘56 a special case of the gencral problem:
how to cstima,t‘c{f\o} a dynamical system the rate of transition in
the {low of pha\sc space from one region into another.

The matﬁcﬁlatical treatment of ergodic properties of mechanical
Systen'ag‘is" largely measure-theoretic, The definition of mixing
is also of that nature. Tt would be interesting, in order to provide
an additional description of the behavior of such systems, to
introduce metric notions. The notion of measure is natural in
phase space — Liouville’s theorem refers to such measures cstab-
lished for any Lagrangian system of coordinates. The topology
of the phase space is also given quite naturally by these coor-
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dinates, When it comes to defining a metric, that is to say distance
between any two points of phase space, no such unique definition
seems apparent. In order to trcat both the coordinates and the
momenta on a comparable basis onc must reduce, say, the latter
dimensionally to quantitics in units of length since distance will
involve additively both coordinates and momenta. If this were
done, then the notion of mixing could be investigated, in addition
to its measure-theoretic behavior, from a more geometrioipoint
of view. One could, for cxample, demand that, for,& )general
flow, two fixed points at a given initial distance travgtse space in
such a manner that their distance as a function of~£i1ne, averaged
in time, tends to the average distance between @wy two points of
phase space. For the latter to be defined: .‘t‘l\le'phase space has
to be bounded {compact). More strongly yet, one could define a
“metric mixing”’ by requiring the analpgué of the above property
for turbulence on k-tuplets of poingeyk

Another illustration of the tyfe)'of problem involving the
estimation of the rates is the f8Hdwing: Consider a problem of
three attracting bodies, say Mith equal masses, and with given
total energy — the juitialeflbditionsrheing such that the kinetic
energy is roughly equaldfo the potential energy of the system.
For certain special ipitidl conditions, the three points may, for
all time, remain ip 3bounded portion of the configuration space.
With other initial\cbnditions onc of the points may, after a certain
time, start escaping from the remaining two (in the sense, for
example, thiabits distance from the center of mass of the other
two poin\g will inerease without limit). The first question is, given

* Ananalogue of the above property of mixing has been investigated
infthe finite case: Tnstead of a continuous space, we have a finite set of
“points. One may consider a transformation, ie., a permutation of such a
set of points. Onc may then consider, e.g., the average distance in the posi- -
tions of two particular points. For a random permutation this furns out
to be asymptotically equal to #{3 when n is the number of points in
the space, for the obvious distance |i — | between any two points ¢, §
of the set. The notion of a metric in a phase space would be useful for
“geometrization’ of various other physical properties of the flow. A nseful
n:}etric will have to depend on the particular Hamiltonian describing the
given system.
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the total energy of the system, what is the volume of phase spéce
corresponding to conditions which will guarantee its boundedness
in space for all time. In case of unstable systems, what is their
average lifetime, that is to say, time after which the cscape in
the above sense will take place? In the language of the phase
space one is interested in the rate at which the volume, occupied
by points corresponding to bounded configurations, goes into the
volume corresponding to systems in which one of the threc bodies
is escaping from the other two.

Since hardly any quantitative work cxists on problems of ratése)

in the above sense, numerical work on computing machines,ma\y
be of heuristic value in suggesting the kind of theorems{ which
one might try to prove. The usual arguments on “reldXation”

times are based on the size of volumes in the phage'space alone

and are in general lacking in rigor. In the last chapter we shall
discuss some heuristic possibilities now opern throug computations
on electronic machines

7. Seme problems on efecggéihagﬂetic fields

The mathematical im'estigatioas\,;;;d b}f’oiln]g:gré, Birkhoff, and
their followers, of gencral qua}jjcaﬁire‘an Yasymptotic properties
of motions of dynamical sysgenns and the corresponding ergodic
theories are now in need of\géilera]iza.tion to systems of infinitely
many degrees of freedonny Recent developments in the new field
of magneto—hydrodynzimics a study of the motion and behavior
of ionized ma.ttg—;rf\'in. electromagnetic fields —— stimulate cor-
responding inﬁésﬁgations on a more complicated topological
level, In partieilar, a theory is needed to describe the topological
proper‘g?g;’{ﬁfufamilies of magnetic lines of force in space; in. the

most lementary case, these may be imagined as due to steady

electric currents on a fixed system of curves (wires).

There are interesting problems arising in this connection. To
start with the simplest: consider a single closed curve and a steady
electric current stowing through it. Does there exist such a curve
with at least onc single line of magnetic force g dense in some
region of space? (It is casy to find systems of wires such that

Q
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magnetic lines will be, in general, dense on surfaces; statements
sometimes made to the cffect that a magnetic line is either closed
or else goes from infinity to infinity are obviously incorrect.
For example, if the currents are on the two curves: the zaxis
and the circumference of the unit circle in the z, g plane, the
lines of force will be dense on tori, except for a countable sct of
surfaces.) ~
It would be interesting to describe the system of magneticJines
of force due to a current flowing on a knotted (infinitélyythin)
wirc. In particular, suppose the current flows through 3™ clover-
leaf’’ knot. Does the system of lines of magnetic farce in space
surrounding the knot reflect topologically th¢’»*knottedness”
of the curve? Such systems of curves may e’é’(}iibit considerable
topological complexity even when generatedhby currents flowing
on straight lines, as shown by calculatiohs on the properties of
lines of force duc to currents ﬂowing(:(}t the three straight lincs
z=1Ly=0,y=12z=0 z— Ky = L

1t would be of interest to knowithe ergodic properties of a line
of force {ergodic with respgch vto a particular parametrization);
e.g., the behavior ofvthetaeglibneey ofgpvints one unit of length
apart on a line of force. For'example, are such sequences uniformly
dense in some regions, of space?

Answers to quest})ns of this sort would, of course, give merely
preliminary matewal towards a theory which should generalize
the existing w:o\rk on dynamical systems of # particles. Clearly,
systems_iavOlving infinitely many degrees of frcedom lead to
consideration of phase spaces of infinitely many dimensions. In
the abscnce of a definition of invariant measure (invariant under
th¢ Ylow defined by the Hamiltonians of the problem) the first

“agtempts would be to approximate the infinitely many variables
by systems with a finite number and then attempt a passage to
the limit for the functionals in question. The additional difficulties
due to the fact that Hamiltonians involve forces dependent on
velocities (c.g., Lorentz forces) require, in the finite approximation,
a study of nonhclonomic systems,
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8. Nonlinear problems

In some previous sections we have mentioned a few questions
referring to nonlincar functional equations. A short discussion
will be given below of a specific problem of some physical interest.
This problem was investigated through computations on an
dectronic machine and was meant to be the first of a systematic
sequence of such problems, increasing in complexity, involving non-
linear equations. This work was planned by E. Fermi, J. Pasta, and
the writer [1] — a preliminary account of the motivation for.this
program and the part of it already performed will be given below.

The first problem involved the case where the nonline?tf"terms
were small compared to the main, linear ones and couljf;l be treated
as perturbations for the initial range of the paramciefs. The first
such system studied was that of a vibrating.tring with fixed
ends, with forces betwecn elements which, ¢Ontained in addition
to the usual elastic linear terms, nonlincér: ones, ior example,
terms quadratic in the displacements. The linear problem has the
well.known periodic solutions; thg;:ﬁr’esence of the additional
terms provides, in time, a “mixingiwel dhedistes,which, the linear
system would possess. The plan{was to follow the motion for a long
time and to obtain the spesd with which such a system attained
a statistical equi]ibrium,\&\s:{ate in which modes of vibration of
all kinds are present. The calculations involved an approximation
to the continuous string, by replacing it with a finite number of
particles, and \;zqﬁc\berf(}rmcd during the summer of 1953 on an
electronic cor@u’ﬁer in Los Alamos (the “Maniac,” onc of the first
such machih:es built.)

T his.,pr’dblem was to serve as the very simplest one. The ultimate
aim wag to discuss problems with more independent variables in
the hope of obtaining material which would suggest some general
features of behavior of systems with an infinite number of degrees
of freedom, with nonlinear interaction terms as they occur between
the oscillators in quantum theory Of between the degrees of
freedom in an electromagnetic ficld or a meson field. The mathe-
matical possibilities concerning what might be called guasi-siates
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(in the sensc of Chapter VI, Section 3) were discussed with Fermi
in this connection,

For the numerical work the continuum is replaced by a finite
number of points {at most 64 in our actual computation) so that
the partial differential equations defining the motion are replaced
by a finite number of total differential equations. We have,
therefore, a dynamical system of 64 particles. If x; denofegithe
displacement of the ¢th peint from its original position and «
denotes the coefficient of a quadratic term in the force.béf\mgen the
neighboring mass points (8 that of the cubic term in ether prob-

774

lems}, the cquations were \

(1) & = ([@oq + %y — 22) + al{@y, — wa}z\l (m: — 2 0)%
\ i=1 2., .,86
X7
(2) & = @iy + e — 22) + FLEEY — 2" — (2 — 2},
\ i=12,...,64

or

S
_ > 3

The coefficients « and 5 were ph’ésén so that, even at the maximum
displacement time, :cﬂl‘\lﬁewn Iljg%glgapbgl% ofnthe force was small com-
pared to the linear termAeg., of the order of one tenth of it}. If we
let the number of part’j&les become infinite in the limit, we would
obtain a partial diffétential cquation containing, in addition to the
terms in the ust}a% Wave equation, nonlinear terms of a complicated
nature, TN '

Anothe}j\@bs"e studied later was:

~§ £ = Awy, — ) + Blw, —x, ) + C

wher&'the paramecters 4, B, C are not constant but assumed
diiferent values depending on whether or not the quantities in
}arenthcses were less than or greater than a certain value fixcd
in advance. This prescription amounts to assuming the force as a
broken linear function of the displacement. This broken linear
function may imitate to some extent a cubic dependence.

The solution of the corresponding linear problem is a periodic
vibration of the string. If the initial position of the string is, say,
a single sine wave, the string will oscillate in this mode indefinitely.
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Starting with the string in a simple configuration, for example, in
the first mode (or in other problems, starting with a combination
of a few low modes), the purpose of our computations was to see
how, due to nonlinear forces perturbing the periodic lincar solution,
the string would assume more and more complicated shapes, and,
for ¢ tending to infinity, how the total energy of the string would
come to be distributed in all the Fourier modes. In order to observe
this, the shape of the string, that is to say, z as a function of 3
and the fotal potential plus kinctic cnergy were analyzed perig-),
dically in Fourier series. This amounts to a Lagrangian chagge’

of variables: instead of the original &, and @, i = 1, 2,485 64,
we may introduce d and @, 2 =1,..., 64, where ¢\
L
.. thm )
{4} a, = 2 %;sin —-
64 .\\:

g L -

The sum of kinetic and potential energies juthe problem with a
quadratic force is NN

Egn + Epor = %E (@ 4 (xi+1jf’ﬁ;’3i)2 + (2 — %1)?)

N

ar
. '\-.?w2w.dbl‘aglibraryzkrg,jn.
: 2
(5) By + Epor 205365 + 26 5107 15

if we neglect the contrh)}ltions to potential encrgy from the
quadratic terms in_the-force which amounted in our case to at
most a few per ger}t\ of the total.

In each problem reported herc, the system was started with
zero velocitigsiat time ¢ = 0. The length of a computaticnal time
cycle useck “Waried somewhat from problem to problem. What
correspduded in the lingar problem to a full simple period of the
motionswas divided into a large number of time cycles {up to
500) in the computation. This is necessary for accuracy. Each
problem ran through many rwould-be periods” of the lmear
problem, so the number of time cycles in cach computation ran
to many thousands. That is to say, the number of swings of the
string was of the order of several hundred, if by a swing we
understand the period of the initial configuration in the cor-
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responding linear problem. The distribution of energy in the Fourier
modes {5) was noted after every few hundred of the computation
cycles. The accuracy of the numerical work was checked by the
constancy of the quantity representing the total energy. In some
cases, for checking purposes, the corresponding linear problems
were run, and thesc behaved correctly within one per cent or so,
even aftcr 10,000 or more cycles, ,
The calculation of the motion was performed in the ; variables;
after cvery few hundred cycles the quantities referring(to’the «,
variables werc computed by the above formulae. It should be
noted here that the calculation of the motion couid™he performed
directly in the @, and 4,. The formulae, howyer, become un-
wieldy and the computation would take lotigér time. The com-
putation in the a, variables could have bécn more instructive
for the purpose of observing directly t]@l\l‘n}:eraction between the
a's. \®,
Onc should now say here that thecsults of our computations
showed features which wcre,;f{"bm the beginning, surprising.
Instead of a gradual, contingeus flow of energy from the first
mode to the higher,modggaalibafrfhe ginoblems show an entirely
different behavior. Stagfing in onc problem with a quadratic
force and a pure sine\wave as the initial position of the string,
we indeed. observed nitially a gradual increase of energy in the
higher modes a{s’.predicted e.g., by Rayleigh in a perturbation
analysis. In fhc” first problem, mode 2 starts increasing first,
followed hy®ode 3, and so on. Later on, however, this gradual
sharing af énergy among successive modes ceases. Instead, it is
one g{.’the other mode that predominatcs. For example, modc 2
’de‘gig‘t‘es, as it were, to increase rather rapidly at the cost of all
othter modes and becomes predominant. At one time, it has more
energy than all the others put together! Then mode 3 undertakes
this role. It is only the first few modes which exchange cnergy
among themselves, and they do this in a rather regular fashion.
Finally, at a later time, modc 1 comes back to within one per cent
of its initial value so that the system seems to be almost periodic.
All our problems have at least this one feature in common. Instead
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of a gradual increase of all the higher modes, the energy is
exchanged, essentially, among only a certain few. It is, therefore,
very hard to observe the rate of ‘“‘thermalization’ or mixing In
our problem which was the initial purpose of the calculation.
Looking at the problem from the point of view of statistical
mechanics, the situation could be described as follows: the phase
space required by a point representing our entire system has a
great number of dimensions. Only a very small part of its volume
is represented by the regions where only onc or a few out of all\
possible Fourier modes have divided among themselves the bulk™
of the total energy. 1f our system, with nonlincar forcesﬁag:ﬂng
between the neighboring points, should behave asa good:e}czﬁ'nple
of 2 transformation of the phase space which is ergodia prﬁﬁctrically
transitive, then the trajectory of almost every point:should be
everywhere dense in the whole phase space. \}I@Q}o‘overwhclming
probability this should also be true of the poitt which at time
t — 0 represcnts our initial configuration,(and this point should
spend most of its time in regions correspanding to the equipartition
of encrgy among various degrees ojljfreédom. From the resulis,
this seems hardly the case. The erpodic sojourn times in certain
W wEw . .dbraulibrary. i
subsets of the phasc space may»show a !enﬁcﬁég;gt'& approach
limits as guarantced by £h# ergodic theorem. These limits,
however, do not seem tg és}respond to equipartition even in the
time average. Certainly,/there seems to be very little, if any,
tendency towards ,\eqﬁipartition of cnergy among all degrecs of
freedom at any giveh time. In other words, these systems certainly
do not show much mixing. Rather, the behavior of such physical
systems sugg’ests the cxistence of “quasi-states” in gnadratic prob-
lems, \dig'aiésed mathematically in Chapter V1, section 3.



CHAPTER VIII

Computing Machines as a Heuristic Aid

1. Introduction

In Tecent years a considerable amount of interesting heuristi€
mathematical work has been made possible by the developricnt -
of fast electronic computing machines. Much more of this, plginﬁgs.rily
in mathematical physics, but also in combinatorial andisis and
number theory can be expected in the near future. A k"fl}wledge of
the behavior of special cases has always been us fijl 'and a back-
ground of experimental results has played afimportant role,
notably in number theory; this was cmphasized by Gauss himseld.
Means of greaily enlarging this backgmupﬂ are now within reach
and at a cost in time spent in such g:qcijerimentations which has
been enormously reduced in eompaﬁéén with hand calculations.
In the following sections we sh"alk\g}v@b,aaljmagig?gpgks-of work
already performed together with a rather arbitrary illustrative
selection of possible futw e'\ist’udics.

It might be thoughtithat the interesting questions of com-
binatorial analysis legd “4mmediately to numbers so large that
Memory ]imitatio;;é,,prohibit a useful study of such problems
even on the preset fast computing machines. Such is not always
the case. Som@problems have this general character: the number
of elementg’rj’r operations (e.g., additions and multiplications) may
indeedrbaery large, ie., of the order of many tens of millions,
but the/“memory’’ involved is only moderate, of the orders of
hundreds to tens of thousands of positions. Indeed the rather
widespread ‘‘fear” of enormously large numbers appearing in
the study of combinatorial problems is often « misapprehension.
While it is true that the fundamental combinatorial functions
like 2% or n! increase rapidly with #, it seems that in many cases
the formulae expressing the asymptotic behavior of certain
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interesting combinatorial functions are not only suggested but
already rather well illustrated for small #. For example, the
density of primes less than ten thousand gives a fair picture
of the asymptotic density. Speaking loosely, many asymptotic
formulae become valid within a small error for moderate valucs
of m.

In such cases this may be due to a combinatorial fact-ghich
we shall vaguely describe as follows: Let Z be a subsetvof the
set of all integers such that in its definition at most [\eberatmns
of Boolean algebra and elementary arithmetical Gperatwns are
used; the number of quantlflers and the opei‘ations of forma
tion of direct product used in the definitionéis p. Let f(N '} b
the number of integers in Z not exceeding/JV and suppose that
y = lim__, . f(N)/N exists. In certain cases, given e > 0, an csti-
mate on N (g) could perhaps be glver\ehch that |(J(N)/N)—r|<¢
for N > N{e), & priori in terms of 8, {, and p. This will depend
most sensitively upon p. Suchy an estimate cannot be given 4
priori, valid for all general retursive functions. This follows from
the results of Gédel. In many practical cases, however, when $
is small, one mlgm“expectummlh like N (s} ~ (i/¢).

"\
2. S{iﬂie combinatorial examples

We shall mention at first a few questions of enumeration.
Given the 86" E of integers from 1 to » and two permutations

S, and Sg.ef this set sclected at random, what is the expected

numhef g”of elements in the group generated by these two per-

mutétions?

',\ﬁnalogouf,ly, let T, and T, be two random transformations of
\”\;th‘e set E into iiself; what is the expected number t of elements

in the generated semi-group? Is ¢ > z?

These numbers of course do not excced #! and »*, respectively.
What is the relation between the sizes of 7 and ¢? If we postulate
three or morc permutations and the same number of transfor-
mations, does the relation between v and ¢ reverse?

In any casc, one can investigate such questions empirically for
small #, on the machine. This can be done by using only a moderate
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number, say 100, of randomly selected pairs of permutations
and even though 100 is very small compared to (n!)2 evenin cases
where # equals, say, 7; the average values of ¢ and 7 could be
approximated well with a good probability from such sampling.

To give another example of such a sampling or “Monte Carlo”
approach to combinatorial problems, one could mention the prob-
lem of the walk of the knight on the chess board. This consists
of finding a succession of moves of the knight which would cover
each position on the board exactly once. Euler found many,

solutions, but no general procedure for generating such wa,]\li‘m\

< known even for the case of the ordinary 8 X 8 board. Certain
practical recipes, €.8., the one (given by Euler) of mox{iﬁg'ﬁinto
places which are already almost surrounded, seem to befsaccesstul.
It is quite obvious that a computing machine can pexfoem attempts
to find solutions by trial and error even embodying rules ke
the above and also more complicated ones Whl@x dnvolve retracting
the last 1, 2, ... & moves in cases whem\blind alleys develop.
The memory Tequirements in such a problem are small and it
would appear that the advantage of {h# speed of the machine is
considerable in situations of this_sart wherc the advantage ofa
visual survey available 1o t‘r1e.llﬁ“ﬁ““1’ré"hdli3ﬁ%ﬁﬁb'férﬁﬁé¥ﬁ-i§maﬂ. The
nnmber of attempted walks’g‘i?lshe knight which can be performed
on the machine in the covtge of a few hours is of the order of 10°.
A result of such statigtios would be the proportion of successes
in trials involving given rules. M. Wells has obtained results on
the Los Alamos cotRputing machines for this problem, comparing
the 8 X 8 cas‘\e;With other # X # cases.

Heuristic vesults can be obtained on combinatorial aspects of
an algehfa bof quantifiers in models of projective algebras {ci.
Chapter), Section 5). If E is an infinite set, it is known that
starting with two sets 4 and B in E x E one can obtain by the
operations of projective algebra an infinity of new sets. If E is
finite, consisting of # points, the question arises of finding a basis
for the class of all subsets of £ X E. Of course the »? individual
points form such a basis. But what is the minimal number of sets
of a basis? The projective algebras generated by two fixed

Q)
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randomly selected subsets 4 and Bof E X E are of some interest.
What is the expected number of elements in the projective
algebra thus generated? This could be investigated on a computing
machine for all small #, perhaps up to 7 or so. The obvious sym-
metry and conditions of the problem reduce the number of cases
to be investigated from (2(*)? to something like 22* for small
values of #. ~

Still another example: We have mentioned before the prob]em
of approximating a 1—1 transformation T: 2" = }{z, ¥} g;i‘*— (2, 4)
of a product space into itself by a compo:.ltlon of transformations
of the two types U: (I) ' = 2, ¥" = k(z, 7). and &) 2=y
y' = z. The finite analogue would be to have ﬁ;e space E consist
of a small number # of points, say #» = 8.and try to obtain all
transformations of the spacc E X E by composition of the
transformations of the above type. ;;(QImjlar question for the
three-dimensional space, ie., E® Juwolving transformations of
the type indicated in Chapter 4, "Section 2a could be settled
by work on computing machings for small values of #.

The combinatorial illustra}iVe lemma of Chapter 2, Secton 1
has been verified bywP dltelfjbifoy ergins by an examination of
all cases. Probably a fast computer could examine all cases for
n — 8 in a relatively“short time.

The question whether the isometry of two spaces A2 and B*
implies the istiiefry of A and B where the latter are finite sets,
with a metric-such that the distance assumes only the values 1
or 2, h%s—l:élso been studied by Kelly [1] who wverified it for
small %, \This problem also lends itself to investigation for some-
wh:{t Jarger # by the electronic computer.

\ ) 3. Seme experiments on finite games

" Asis well known, a game between two players can be considered
as taking place according to the following schema: A combinatorial
graph is defined starting with cne vertex and branching succes-
sively into a set of segments. That is to say, we have n, segments
issuing from the initial point corresponding to the choice of any
one of n; possible moves by the first player, Then from the end



VvIiI. COMPUTING MACHINES AS A MEURISTIC ATD 119

of each of these segments we may assune there exist n, new
segments (without loss of generality we may assume that this
number is the same at the end of every initial segment). The choice
among these is left to the second player. After that we have
n, vertices issuing from the ends of these, and soon. Ina finite
game -the gamc terminates after % moves. In the set of
N =, ity .. %y final vertices a subsct W of these is defined
45 the winning positions. There might be given another subset D
of points corresponding to the drawn games. Most of the games
Ike checkers, chess, etc. can be thus formulated, although oney
should remember that what we consider as a position of the gatne”
may be a rather complicated structure involving the sgq::lénce
of all previcus positions, etc. ON

A winning strategy (for the first player) means thevexistence of
an integer 7, so that for every choice of i, there will eXxist a choice
iy 50 that for every choice of i, and so o1, the g:l(ex}lent constructed
belongs to the set W. On the computing machines in Los Alamos
some extremely simple cases of games of this sort were studied
(P. Stein and S. Ulam 71}, and W. Walden71]). These experiments
concerned comparisons between 1’2%7&:’1‘5 of different strength, e.g.,
the computation of the winning}z&laﬂggg FYibEplags iemploying a
perfect strategy versus one whe “gees’” only a limited number of
moves ahead, when the se\f,W was given at random.

Recently the writer has\tried to find similar game formulations
in some otber mathp@a{icd situations. So, for example, the two
players A and B,o{nstead of selecting intervals as in the example
above, could ghstruct together, in turn, {wo permutations of the
set of N integ . A selects nq, B selects #y, €1C., UP 1O fy, obtaining
a permqtglibn E,. After that they similarly construct a permuta-
tion £y Ey and E, generaie the group Sy of aJl permutations
on N\i{ltegers it is the player 4 who wins, otherwise B wins.

To give a ““¢opological”’ example, suppose a cube is subdivided
into a great many smaller cubes and one of their vertices is given
as a starting point. Two players, 4 and B, play as follows: The
first player selects an edge of a small cube issuing from the
starting point. The second player has to continue by selecting
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amother edge whose beginning coincides with the end of the segment
just given, otherwise arbitrary. Together the two players establish
a path. This path must intersect itself at some time. If the closed
curve thus obtained for the first time is knotted, let us say that the
first player wins. In other words, 4 tries to close the curve so that
it will have a knot in it; the second player tries to unwind the arc
before it closes. Obviously some knowledge of topology is desired
to plan a good strategy in this game! To study a game of thigsort,
preliminary explorations would be helpful on the cémputing
machine which could try out tentative sirategies. ()

The examples given are intended merely as arbitrary illustrations
of the general possibility of converting special combinatorial
studies to game situations. The desirable corfesponding theorems
would assert the existence of winning strategies. The writer found
it rather amusing to consider how on@y€an ‘‘gamize” various
mathematical situations (or perhapg the verb should be “‘paizise”
from the Greek word maelew, to, play)

4. Lucky pumbers

The sieve of Eratosthediosaglidics thegprimes among the natural
integers. One can thir;Kof variations in the definitions of sieves.
The following praocedure was investigated numerically on the
electronic compuging machine in Los Alamos (Gardiner ef a/. [1]}.
In the sequence’ wiall integers we strike out every second one, that
is to say, all fhe even numbers. The first number remaining (apart
from 1, w}uc\h will not be counted) is 8. We shall now strike out
every #hivd integer, counting only the remaining ones, that is to
say,\this time we will strike out the integers 5, 11, 17, etc. In
Alje)remaining sequence the first number not used before is 7.
Therefore we shall strike out every seventh number, counting
among the remaining ones again. This will eliminate 19, etc.
We procecd in this manner ad infinitum. The numbers that
remain after the sequence of these procedures we might call,
for example, lucky numbers. They are: 1, 3, 7, 9, 13, etc.

It turns out that many asymptotic properties of the prime
number sequence are shared by the lucky numbers. Thus, for
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example, their asymptotic density is 1/in{n). The numbers of

twin primes and of twin luckies exhibit a remarkable similarity

up to the integer #=100,000, the range which we have investigated

on the machine. The number of adjacent primes differing by 4

or by 6, 8, etc. is, in this range, very similar to the corresponding
number of adjacent luckies. It also happens that within the range
investigated every even number is a sum of two lucky numbers.

The Jucky numbers of the form 4n - 1 and 4n-+ 3 secem to be Q
equally distributed, ete. O\

Another sieve would be a random omne, that is to say, we refain -
the integer # with the probability 1 jin(n). In the class of sequ,igﬁées
thus obtained one could try to prove theorems for almestrevery
such sequence — statements about their distributigm}ﬁ detail
such as representation of integers by sums of these, distribution
of gaps between adiacent ones, etc. (Sec Erdt‘;s;{}a:botinsky [;
Chowla, Hawkins, forthcoming papers.) N -

It would perhaps not be without interest_for number theory to
randomize similarly procedurcs leading fosprimes in the quadratic
fields. Analogously one could randomize the sequences of squares
of integers or cubes of integers,';et;ﬁlaﬁdﬁmmﬁ-ﬂjs;d@pg%e analogue
of Waring’s theorem. An ¢ orimental study on computing
machines would quickly s;u\@cst statements likely to be true.

5. Remarks on com;iutations in mathematical physics

The next few p es? will deal with a few simple examples of
physical problems &which can be usefully studied through com-
putations on modern machines. It is obvious that computational
work on a lagge scale is immenscly helpful in testing out theories
on ph S'LQEJ models; problems in general relativity, for example,
lead tc&ed_uations so complex that in most cases it will be numerical
work which will test the validity of the models. Problems of
constitution of the stars with assiumed models of energy genera-
tion can be solved in special cases by such computations. One
could name problems in atomic and molecular physics, etc., etc.,
where numerical checks of existing theories will be increasingly
available. The mathematical complexity of theoretical physics
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has been steadily increasing during. the last decades. This is so,
not only because of its increased scope in embracing more compli-
cated systems, but also because of changes in the very foundations
of physics: the entities once treated as “points’’ (e.g., the molecules,
the atoms, the nucleons themselves exhibit now a combinatorial
substructure), In a number of problems one considers interactions
between a considerable number of points (or fields with many
degrees of freedom), that is, onc deals with the n-body pyoblem
for sizeable values of #, but not large enough so that théy- «¢an be
handled by statistical or thermodynamical methodss. JThere is
little hope of obtaining solutions with the methédlof classical
analysis alonme, so that heuristic investigatiéns’ mvolving an
examination of many special cases seems in dicated for the present.

The small selection of calculations deseribed in the sequel is
intended to illustrate some of the InqtaQGeS where understanding
of the problems might be furthere@d by computation of special
cases; the electronic computing ,maéhmes enable one to make,
as it were, “‘experiments in theary™ ‘by computations, either of the

classical or of the “"\Ionte Carlo type computations (Section 8
contains a short actoun br?U!I;Lﬁ Tigﬁ:e%'j

6. Examiplés from electromagnetism

Suppose a systetn of steady currents is given flowing through
one or severaliodrves fixed in space. One is interested in the field
of the ma@emc tines of force duc to these curves. The calculation
of theselifgs involves a numerical integration of a simple system
of ordlnah'y differential equations. The force field, at every point,
is determined by curvilinear integrals (the law of Biot-Savart).
Ve~ mentioned before some questions concerning the behavior
it the large of such systems of curves — their topological and
ergodic propertics, for instance, in Chapter VII, Scction 7, the
problem of the field due to a simple cloverleaf knot. This can be
realized for computational purposes by a space polygon with six
sides. To begin with, simpler configurations were calculated on
the electronic computer in Los Alamos. The first system studied
was one given by currents flowing through two infinite straight
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lines, one the y-axis, the other wire parallel to the m-axis and
intersecting the z-axis at the point (0, 6, d). Starting with an
arbitrary point in space, the magnetic line of force is traced out
by computing the position of a sequence of points in the direction
of the force at the preceding point. Taking the points sufficiently
close and correcting for the changes in the field, onc obtains an
idea of the properties of the lines of force (tangent everywhere
to the force vector). In order to obtain information about some
qualitative properties of cuch lines in the large, the machines
computed the number of times a line of force winds around calbh™
of the given straight lines. This is done by computing the Gauss
integral. Some lines of force continue looping one of thé: wires;
some others laop them both at once. Also the ma.chine'w’ill"compute
the number of times a line of force crosscs the sutface of a given
sphere, Other simple topological invariants, Cq syvthe Kronecker
index of a mapping of directions onto a ’gr&én sphere can be
calculated and printed as a result of the €amputation. The next
system involved three straight wires a,'lljskeav to each other. These
computations were considered as a,P’;eliaration for the computa-
tion of a field due to the six-siddi} knotied polygon. The com-
putation of such integral—valuéd invariants wil bt be affected
by the accumulation of errors, Winavoidably present ina numerical
computation (see, .8, ’a\p\aper by Borsuk and the author [2]
on e-invariance of mappings}. Roughly speaking, this is due to
the fact that the cafputation may be so arranged that the field
of error vectors-is rotation free in the large.

2 8

N 7. The Schrodinger egquation
Thf‘\”ﬁjlil}e’ independent Schrodinger equation
dyp -+ (E—Vipg=0
can be put into the form
sujot = Au — Vit

through a substitution # == we~Et by introducing a “time’’ para-
meter ¢, Both the lowest eigenvalue E and its characteristic
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function y(x, ¥, z) can be obtained approximately by the fol-
lowing calculation: We imagine a population of fictitious point
particles which multiply at the point &, y, z according to the given
function V{#, y, z) and which diffusc randomly through space,
that is to say, perform a random walk as indicated in the equation
by the Laplacian. The “game’ played on the machine is then to
process a great number of particles, each of which diffusesin
space and at the same time multiplies its weight according to the
given potential function. Processing a great number of the partlcleb
one obtains a population which asymptotically will tend to one
posscssing a density ye?®. The boundary conditions <an be properly
handled; the usual conditions at infinity are @ttomatically ful-
filled in such a model, and if they are prescrifed on finite surfaces
they may be satisfied by introducing sultaQLe rulcs, c.g., absorption
of particles on such surfaces. The progedure will give the lowest
eigenvalue and its characteristic funetien. To obtain the successive
eigenvalues and their characteristigfihctions becomes increasingly
difficult by such methods. Tof “example, to obtain the second
characteristic function one wauild have to start with a population
consisting of two Hﬁﬂfsd%‘fmﬂﬁlﬁwegrﬁ‘”black” and “red”) cor-
responding to the posﬁ:}ve and negative valucs of the function.
One would start with.& distribution orthogonal to the first eigen-
function (assuminyg it already determined) and then allow this
population to,@fidergo a diffusion-multiplication process with a
suitable comvention of mutual annihilation of the black and red
pa:tlcle%henever they appear at the same point {rcally a zone in
space} e asymptotic population would then represent our
secqnd cigenfunction.

“\Stich a statistical approach possesses an advantage in problems

where a greater numbcr of space dimensions is invelved and the
given potential function is complicated so that the usual methods
of approximation become prohibitively lengthy. The main point,
however, is as follows. One may only be interested in the value of
certain given functionals F;{w), s =1, ... &, of thc unknown
solution %. In a classical approach one has to “know’ o itself
or at least know it at a sufficicnt number of points. Through a
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statistical approach like the above such functionals might be
directly computed through sampling on those values of v which
are obtained in the calculation. This is a general feature of the so-
called Monte Carlo method, which we shall describe very brieily
in the next section.

8. Monte Carlo methods

The sampling procedures in question might be said to consist M
in the “physical’” production of models of combinatorial sitnations
in mathematical problems, Or of the playing ot games with ™
distributions of ‘‘particles” produced on computing maghiries,
which distributions will constitute approzimate 501uﬁon§ of
physical problems. N

Perhaps the simplest example is given by the probleth of evalua-
tion of a definite multiple integral. Suppose w‘ei\%:xht to find the
volume of a region K contained in the unit gube’in # dimensions

A

defined by a given number of inequalities,‘thg:f is to say, evaluating
([ g w8
where the region R is defined byvihetralitisry org.in
oley . -2, <0, pal®) .’{m‘:xn) e 0, Opl® Lx,) <0

The elementary numericgﬁo\&cedures would consist essentially of
counting the lattice points of a subdivision of a cube in the space
of # dimensions quﬁ&dning £ and ascertaining the proportion
of those satisfying. the given inequalities. This is impossible in
practice wher‘r\’ {3 moderately large, gometimes even when # is
greater tha,r)'.B, and the subdivision on each axisinvolves something
like 104} points. The obvious statistical procedure would be
insteadhto take a number of points ai random In the n-dimensional
cube, with uniform probability in this cube and count among
those selected the points satistying the given inequ_a]ities. Obviously
for a precision of a per cent or 80 0NE nceds to take only a number
of points (of the order of 104} much smaller than the total number
of all lattice points in a 100" set. This is clear il case We know
a priori that the volume of the region in question is not very small
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compared to that of the containing cube. In such a case special
procedures are indicated. To illustrate them we shall take two
examples of problems suggesting less simple-minded sampling.

Suppose one is interested in calculating the probability of a
successful outcome of a solitaire (game of cards for one) where we
assume that skill plays no rele: a purc game of chance. In cases
where the game has a very small probability of success gnost
actual plays will end in failure and only an upper limit Would be
obtained for this probability. To get some idea of a IOWei‘ limit
= 0, suppose one obtains {still obeying the rules of the. game) ina
significant proportion o of trics, a situation where)only rather
few, let us say 10, cards remain to be played, Itunight be uscful
to try, in such cases, various pcrmutatioris’bf the remaining
10 cards and continue the play from there YBy examining a large
number of such 10 factorial pcrmutafr\i\éns one could obtain the
number § expressing the chance thay starting with one of the
previous positions we obtain a Wih: A reasonable gness for the
chance of success from the begitning without “cheating” would
then be of the order of « - f. Jhe idea is to decompose. the problem
into two or more 5t3§€¥"ﬂ?fﬁ‘ﬁlﬁi‘ ¥ €8P mize in the number of
experiments performed\for our sampling.

A similar proble 15 encountered in the transmission of particles
(neutrons or gamma rays) traversing a series of materials serving
as a shield far{these particles. One is interestcd in cases where
only an extremrely small fraction of such particles which scatter
at randofly-and possibly produce other particles of this type,
rna.nage\ v traverse the whole shield. Again it is clear that in
try;\ng models of such random walks on the machine cne could

(waste most of the experiments. The obvious thing to do i3
~ again to decompose the geometry of the shield or, more generally,
the history of the process, into two or more stages, ascertain the
proportion of traversals of the first stage; then starting with a
typical situation after the traversal, try again the random walks
from there on, ete.

An analogue of the Laplace-Liapounoff theorem is needed for
estimates of errors in multiplicative and diffusive processes.
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The computing machines are well suited for experiments of the
bove sort on the qualitative behavior of solutions of linear partial
ditferential equations. Broadly speaking, onc tries to change them
to a form of integro-differential equation describing a diffusive
and branching process, and uses the digital compuier as an analogy
machine as it were. Equations which are quadratic or of higher
order in the unknown functions and their derivatives lead to a more
complicated Monte Cazrlo procedure. As an example let us consider Q)
as a simple generalization of the Schrédinger equation discusseda
above, a bilinear system of two partial differential equations,:( \

R

Bu,fot = xy Aoty -+ Vo (ug)tey, N

2¥7 2

%
Bugjt = xadity 1 Vo (2010t "‘\

u, and u, being unknown functions of the L:Qg)fdinates x, Y 3
and the time t; o, o, say, two given comstants; V, Vs, given
functions for simplcity lincar i #; and s,{and also involving the
independent variables @, ¥, 2. One wouldlike to know the asymp-
totic form of u, and u, (for large va,.]igés' of ¢). This problem may
be looked upon as a generalizat}g;gj\;pjb’;lgg“%%_f;f%;s_ig_n “model of the
Schrodinger equation. It wouldrcorrespond to a model of a system
of two particles with the, Glgntial function depending only on
z, y, # replaced by functjo}}s of the distributions: Such a system
of linked particles presents, comewhat in the spirit of a field
theory, a nonlinea problem. In general there will not exist eigen-
functions. The separation into a time independent system will
not be possible. Tnstead one hopes for an almost periodical
behavior,'cjrfzat least that the unknown functions are summable
by ﬁrs't\fn?ééns in time. One could again try a numerical approach
in the'study of such systems through a Monte Carlo procedure.
In this case the fictitious particles whose density is to correspond
to u, and #, are to Jiffuse and multiply, but this time not according
to a given function IV of coordinates but rather proportionally
to a given function of the density of the particles of the other type.
It is therefore necessary to operate with a frequent census of the
particles of each type to ascertain the value of the “‘potential.”
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In practice an iterative procedure is necessary with the hope of
converging to a self-consistent solution.

Prima facie sampling methods like the above work for problems
imvolving distributions of nonnegative real numbers, specifically
for Markoff chains involving iteration of matrices with nonnegative
coefficients. Let us indicate, however, a way to study “experimen-
tally’” the behavior of matriccs with arbitrary real terms, or&ven
of more general ones. This possibility rests on the fact that'real
numbers may be considered as matrices with all témtie non-
ncgative, by starting with the two matrices g o

T
%

1 0 0 1ND
o) = (7 o)

representing the numbers 41 and — LyweSpectively. This cor-
respondence  obviously preserves both“additions and multi-
plications. Any system described Pyvan » x # matrix of real
numbers can be interpreted probabilistically using 2w X 2
matrices with nonnegative tem’l;é: The sampling would then in-
volve two kinds of particles (i‘black" and “‘red’’) with the transfor-
mation rules given By AR IHUPFRRE S EVe. Again in this case,
however, a frequent ceisls of the result is necessary since the
final results depemx\'dﬁ the difference between the numbers of
black and red particles at each point. One can realize stochastic
models for mattiees with complex terms by having 4 kinds of
particles, or/yhere general algebras over real numbers through a
suitable ofimber of kinds of particles. The Dirac equation could
be studied in such a way (cf. Everett, Ulam [5]).
~O 9. Hydrodynamical problems
N\ Numerical work is essential in many problems of hydrodynamics
of compressible flow since at the present time one cannot obtain
solutions in closed form. Analytic work alone is unable, in general,
to throw light on the asymptotic behavior of solutions or even
on their simpler general properties.

In problems involving morc than one space dimension, one
encounters serious difficulties in planning numerical work. The
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differential equations of Euler and Lagrange can be replaced, of
course, by approximate systems of difference equations, the time
variable, 100, can be dealt with by a discrete succession of steps
in time. The practical difficultics of executing such computations
arc considerable: if the problem invelves large displacements
of the fluid or gas (large compared to the initial dimensions of the
system) and if the distortions of shape are sizeable, the initial
network of Lagrangian points will change its structure in time
and very often cease to provide an adequate basis for an apA
proximate representation of the differential expressions whith™
onc has to compute (e.g., to evaluate density and Bl:ga,séure
gradients). It would secm that the Eulerian systemyf fixed
divisions of space would be more suitable and indgeélﬁn many
problems this is so. However, other difficulties afisc in this
treatment; for example, if the fluid moves to vacubus regions —
or in problems involving two or more ﬂuids;& ¥ is very hard to
obtain an idea about the position of the Motindary between the
two fluids. This is so since in the Fuleriangreatment the dependent
variables arc density and the velocijnyizahd from thesc alone it is
impossible to distinguish between @ region which is completely
occupied by a rarified fluid A gﬁé&? U180 the region
contains a fluid at normal @ensity. In the Enlerian treatment
there will be a fictitious Qo}la\gmtational diffusion from such regions
and onc loses sight_of,tle position of the true boundaries.

In practice, in probléms of this sort, one has to proceed in time
through discreten\j;e\:iods called cycles such that the relative dis-
placcments ig@ése times arc small or mederate, then refine or
change the spatial subdivision of the continuum and shorten the
fime step;\'ét process which may not converge beyond a finite
value ‘of time.

Calculations can be considered that are of less ‘“‘orthodox”
variety. Broadly speaking, at least two different ways fo approach
numerically the problems dealing with the dynamical bchavier
of continua suggest themselves. In what follows a brief account
will be given of some work in this direction, performed by J. Pasta
and the author, on computing machines. This work was followed
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by additional computational experiments of this sort. F. Harlow
[1], of Los Alamos Scientific Laboratory, is mainly responsible
for the evolution of such methods.

One could try to basc the hydrodynamical computations on the
kinetic model of the gas or fluid. Assuming as a model of physical
reality the Boltzmann integral differential equation, one may
calculate the properties in the large of a motion of N “pointsi —
atoms or molecules which have given velocity distributions. These
are subject to fluctuations and yield the macroscopi€ \iotions
only as statistical averages. It is well known, e.g., that'the Navier-
Stokes equations can be derived from this model.“The question
is whether it is computationally feasible to obtain{the macroscopic
quantities like density, pressure, and velocity ak functions of time
on this basis. The answer, it seems, is in the negative for the time
being. If one takes the Boltzmann equqi’\ior\ls literally and considers
the individual points of calculation asS\representing atoms, then to
obtain the average velocity of e point of the gas one would
require, say, & particles per ce],l"iﬁ'a space resolution in which we
are interested. Let the num]i{er' of cells In the computation be /.
If on a linear scale thewpdbitdibedrjresrimls is d, /| = 47, where 7
is the number of dimefisions of the problem (for problems in 1,
2, or 3 space dime: si'én% without special symmetries, » = 1, 2, 3,
the total numben of points in the calculation would be equal
to k4. In a gt@tistical study if one wants a mean error of the
order of 1 /pec’cent, then % ~ 104 If the linear resolution is to
be of t czgrder of, say, 5 per cent, then 4 is 20, Even in prob-
lems i “ene space dimension onc would have to consider 200,000
pqinis? ‘This is much too high for present computers and makes
'i‘t\:c}ear that the “"points” of the calculation should be thought
of as representing not individual atoms, but rather large aggre-

“gates of them. The dynamical behavior of such a point has to

be schematized so as to represent a statistical average of a great
number of atoms. The numerical work will not use the Boltz-
mann equations, but simpler equations which are its conse-
quences. The implicit assumption in such a setup is that our
conglomeration of atoms remains coherent during the entire
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course of the problem. In other words, the small globules of the
fliid do not become too much distended and distorted. One should
now define the density p of the fiuid, and the pressure through
the equation of state. In this outline we may specialize, say, to
either an isothermal or adiabatic process, that is to say, pressure
p = f{p). The pressure gradients which are available through
gradients of density will be caleulated by estimating these gradients
through the instantancous appearance of our system of points,
representing, we state again, the positions of centers of mass ofa
fluid globules. The problem is then one of finding a rule or recipefQ™
estimate the density at a point of space, given only a_finite
system ol points (rather widely separated in practice) r,fIri" the
limiting case of a very large number of points one qm}'ld simply
count the number of points in a square of cube ofaMixed mesh
and this number will be proportional to the depsity. In practice
we are limited to a moderate number of Eo{jnfs for the whole
fiuid, the question is how to estimate thisvdensity in a most
reliable way. Consider the case of two diggensions. One can think
of the points located initially in a.,I"(.i'g'l.}lar array, for example,
on the vertices of a rectangular \dii?é!s(ij%?éucl)ig Ipetter., Yertices of a
triangular subdivision of space.i'b‘% dhradlibLetarokgife cycles of
the computation the geom;atrzjfbi the system will change and one
could, for example, estin}a\be\ the density as follows: enclose each
point by triangles with-fhe closest points as vertices. The smallest
(in area) triangle in Altdse intedor a given point 13 located would
give, through thg.\'nﬁt“io of its arca to that of the origin?.l triangle
at least an iq@\&."df the change in density at that point.

This propé’dure suffers from several drawbacks. They are due
_ to the qu’els‘ﬁon of computational stability of our calculation. The
selection/ of the nearest points leads to discontinuity in time of
the area. In the equations of motion for each of our points we
need the gradients of the density. And in this crude_ way of
calculating the densities themselves the computation of differences
in fixed directions in space is not straightforward. The nearby
points may not be sufficiently close and these gradients may be
very inaccurately estimated. In the case of points on the boundary

Q.
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of the fluid one would need special prescriptions. These errors
would accumulafe very scriously with time.

Another way that suggests itself is to introduce numerically
the forces due to pressure gradients. Onc could imagine repulsive
forces acting between any pair of our points. These would, in
simplc cases, depend upon the distance alone (the forces should
derive from potentials if we assume scalar pressure, Les\no
viscosity or temsor forces, etc.). The form of the potential‘will,
of course, depend upon the equatien of state. Ina one—dj\jﬁeﬁsional
problem the nature of this correspondence is clear. JItwsuffices to
have forces between neighboring points only,. The continuity
of motion guarantees the permancnce in timel of the relation of
neighborhood. The situation 1s, however, cotplctely different in
one or morc space dimensions. The nejghbors of a given point
will change in the course of time. If,\'(jne tried to calculate the
resultant force on a point due to @i\points in the problem, not
‘merely the neighboring points, thie .Computational work increases
— it will grow with the squart;'é;f the number of points considered.
Therefore a “cut-off’” for t‘}}é:force is necessary at some distance
so that we need netcalerdalibrityi¢rglm distance between two
points exceeds a certain ‘constant. The pressure gradient would
then be given diretly”as a resultant of all the forces acting on
a point due fo itsgieighbors and thus depends on the actual positions
without refefente to the initial configuration, “forgotten’ by the
system. Let)us summarize briefly such a computational scheme.

The | {rficles represent small parts of the fluid. The forces due
to presstre gradients are introduced directly by imagining that
p@ighﬁoring or “‘close’’ points repel each other. The dependence

{01 this force on the distance between points is so chosen that in
the limiting case of very many points, it would represent correctly
the equation of state. That this is possible, in principle, is clear
a priovi: the density is inversely proportional, in the lmit of a
very large number of points, to the square (in two dimensions)
or cube {in three dimensions) of the average distance between
them. The pressure is a function of density, and this being 2
function of the distances, we obtain an analogue of the equation
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of state by choosing a suitable distance dependence of the force.
The Lagrangian particles are at

Py (@, ¥, 7)) Pat (@g Ypo P2)s - o PN = (@n > Yo 2w)
The forces {repulsive) between any two are given by
Fi,a‘ = F(d(Pw P:I))

where d{P;, P;) is the distance between the two points.

The average value of 4 at a point of the fluid is, in the limi¥*,
of N > o0, a function of the local density: d ~ p~% for three -
dimensions. ~\ >y

The pressure $ is a function of p alone in, say, isothpfmél or
adiabatic problems. The pressure gradients are thus,réplaced by
forces acting directly on point masses. \ '

There is so far no general theory and the cg)m(\;t‘gence of such
finite approximations to the hydrodynamieal equations remains
to be proved, but even more important, ¢hen that would be an
estimate of the speed of COnVErgencest®

In order to test some of these p,rf:),’posals on actual problems,
some numerical computations were' performed on an electronic
machine, the “Maniac’™ in Log{\lﬁ“ﬁfc‘:?’s%@f‘ﬂﬁ‘?@ﬁtﬁzmype at the
Institute for Advanced S L@y’in Princeton. (Cf. Pasta and Ulam
11]). The main purpose, of these calculations was to {est the feasi-
bility of such numegi,gtil" Schemes rather than to obtain guantita-
tive precision of j;Q'e’results. One of the problems concerncd the
study of the mofion of a heavy fluid on top of a lighter one,
both containédin a cube — with an initial irregularity present at
their bo%ﬂﬁry. The problem involved following the development
of i§‘§mé‘,tablc situation — known as Taylor’s instability — for
motions in the large — beyond the infinitesimal stage — lcading
to gradual mixing of the two fluids.

With the comparatively crude network of points, representing
the fluid, one could hardly expect that the details of the motion
would be correctly represented; it was hoped that the behavior
of a few functionals of the motion would be more accurately de-

picted.
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One of the functionals which was computed as a function
of time was the total kinctic energy of the particles divided into
two parts: the kinetic energy of the horizontal and vertical mo-
tions scparately. Even though the motion itself was very irregular,
these quantities seemed to present rather smooth functions of time.
In the case of a stable configuration with the lighter fluid on top
and the heavy fluid on the bottom, there would be only a periedic
interchange of kinetic and potential energies. In the unstable'ease,
there should be an increase of kinetic cnergy which permsté for a
considerable time. The hope is that with many more &alculations
one could try to guess from such numerical results¢the form of an
empirical law for the increase of this qudn’ut}( 43 a function of
initial parameters. 3

Another quantity of interest is the Spcct@m of angular momen-
tum which may be defined, for exam f€) in the following way.
We draw around each particle a circléic of fixed radius and calculate
the angular momentum in each such'végion. We then take the sum
of the absolute values or the sum, ‘of the squares of these quantities.
This gives us an over-all mpasure of angular momentum on a
scale given by the radiwsd Wawlthngribergdius, these numbers may
then be studied as a fuﬁction of both time and the radius. It is
interesting to cons&l‘f Ahe rate at which the large scale angular
momentum is trafgfetred to small scale eddies —- also, the spectrum
in the asymptot\lc state, if it exists — all this, of course, as a func-
tion of the pagameters of the problem: the ratio of the densities
of the twe{luids and the external force. It is clear that very many
numerical experiments would have to be performed before one
would virust such pragmatic “laws’’ for the time behavior of
y mzxmg or increase in vorticity.

‘Another reason for selection of this problem was an interest
in the degree of spatial mixing of two fluids, starting from an
unstable equilibrium. To measure quantitatively such mixing in
configuration space, a functional was adopted similar to the one
just mentioned for the spectrum of angular momentum. At a
given time §, a circle is drawn around each point P. In each
circle, we look at the ratio # of the number of heavy particles
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to the total number of particles in this region. We take the quantity
u(P, 1) = 4r{1 — 7). This gives an index of mixing of the fluid
in the circle, being equal to zero if only one fluid is present and
equal to 1, if particles of both fluids are equally present in it.
We average this quantity over all the circles. Initially this average
is very close to zero, the only region wherc it differs from zero
being around the interface. As the mixing proceeds, our average
measure of mixing increases with time. Again one might expect
that after a sufficient number of numerical experiments, ONG,

would obtain an idea of the time behavior of this “mixing fl],I\ié‘-* )

tional,” or at least of the time T taken for the over-all mixing
(which is initially close to zero) to become of the ordetryof %
or 1fe. This time, for dimensional reasons, must dépend inter
dia on +/(Lfa) where L is the depth of the vesseland a the
acceleration of the lighter fluid into the heayierjone.

A comparison with experiments actualiy{ performed in Los
Alamos in the problem of Taylor’s instapulity for the case of a
heavy gas on top of a light gas with an‘izr.egula.rity in the interface
between them showed configuratiopgiﬁot unlike those developed
in the calculation, Of course, if .one wanted to put credence in
calculations like the above, thé“‘f‘é’tcrlﬁmé‘ﬂ"{ﬁé&&‘t&%r force law
imitating the real equatiog;cﬁ state would have to be carefully
chosen. The actual beha¥dor, in time, of our functionals of the
motion which we hayé palculated was very smooth despite the
complicated natureagdincreasing cturbulence”’ of the motion itself.

A series of calelations was performed by F. Harlow and M.
Evans [1], us ‘o) somewhat different method but still employing
instead of {he “‘classical” difference equation a finite approxima-
tion to £he ‘motion of the continuum by calculating motions of
points representing globules of the fluid. The results obtained
agreed in elementary Cascs with the analytic results and in other
cases agreed quite well with experiments.

10. Synergesis

In addition o, and in some aspects quite beyond the above type
of use of electronic computing machines one can conceive more

Q
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general possibilities for large scale experimentation on problems
of pure mathematics or in exploration of tentative ideas in physical
theories. The program which will be outlined here requires certain
equipment additional to the existing electronic machines and
certain changes in their operation. These are not yet available
but will soon exist since engineering work in this direction is in
progress. ~

Speaking very broadly, the present machines operate on\a sect
of given instructions (a flow diagram and a code) - wfnﬁh once
given make the machine procced autonomously in solvmg problems
of mathematical analysis or physics. The course of the operations
is completely prescribed and the limited flexibility of the machine
consists, roughly speaking, in taking one pi\fhe other course of -
computation depending on the value of n\umbers just computed.
These so called decisions made by the hachine in practice, so far,
involve only a limited and prescrlbed set of changes in the logical
course which is given.

One could conceive of a more general plan. Instead of using
the machine as a robot or, &% it were, as a player piano whose
tunes are written madimﬁohbttdr@: arpaithine could be kept in
constant communicatign'with an intelligent operator who changes
even the logical at\{}ré of the problem during the course of a
computation, ati\will, after evaluating the results which the
machine prowdes Of course such possibilities exist already, but
to a wvery &{mzted extent. We shall try to indicate by some
examples haw a much more intimate relation could provide useful
resultg™\It is obvious for one thing that a computing machine can
very “quickly provide examples of gecometrical or combinatorial

oSltuatlons which can be studied by a mathematician. Thus it
obviously can play a role analogous to but vastly more efficient
and helpful than scratch paper and pencil work which a person
studying a problem uses to provide himsel with a visual or a
memory aid. Certainly the machine could perform quickly some
of the drudgery of elementary algebraic of analytic calculations.
In a search for examples or counter-examples the machine could
calculate and then display on a screen elements of geometrical
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objects envisaged by the working mathematician and provide a
responsive “‘scratch paper” if not an audience on which one could
try one’s ideas.

Obviously for activities of this sort, a rapid access to the machine
is necessary and to work a computer in such a fashion would
require a way to change its program more substantially than by
just changing some constants of the computation in a short time.
Also, the machine has to provide a quick illustration and display
of the computed quantities and figures. In other words, the probleny
is of constructing ways of informing the machine of the desfréd
course of computation and conversely of having the meiéhiﬁe
communicate the rcsults obtained. N

One rather wide field of application of a display teGhnique will
be in the study of properties of functions of séveral variables,
In many problems it is impoertant to find the Qritical values of a
fanction of several real variables f(xy, @i, - ¢ { ), the function f
being given analytically, e.g., as a pal§iiomial in elementary
functions or quotients of such polynomi:alé.. It is well known that
the usual procedure employed tov'fﬁil"d, numerically say, local
minima or maxima of a single M@%@aﬁﬁ%%ggcso%gsg%rch whlich is
extremely time consuming. If thé'number of 1n§cpendcnt variables
is large, for example 5 or moré,no really efficient method of finding
all the critical points h’l‘f\ibéen proposed. Imagine now that the
values of the functionjsan’be quickly computed on a grid of points
which forms, say; ‘z{’ﬂ\ro—dimensional section in the given space
and the resultinggfunction of two variables, i.e., a surface displayed
as in a projection’in perspective, on a tube. {A code for calculating
axonometriC projections is readily made.) The eye quickly notices
the regjl(:»\ii,:br the regions where minima are Iikely to be assumed.
By &"quick change of scale and a magnification, that is to say,
o subdivision of the region in question into a greater number
of points, a computing machine can act as a microscope of ar-
bitrary power. All we are saying is that in the search for critical
points one can utilize, instead of the blind recipes embodied in a
search code, the visual perception of the brain which is still much
quicker than any now-known automatic code for “‘recognition.”
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By critical points we mean, for example, all of the points of space
where all the first partial derivatives of the given function vanish.
Beyond that, the recognition of other properties of a function
(say, of 2 variables, for example), the finding of valleys, ridgcs,
etc., immediately striking the human eye, would be, at the present
time, almost impossible to code in a reasonable time for an
automatic search by the machine.

Moreover, for functions of 3 or 4 variables onec should also Have
a quick way to instruct a machine to sclect a desired twoeimen-
sional section, to establish on it a set of independent gnd points,
to compute the value of functions on these pointsa and display
it in perspective on a screen. More important still will bé the ability
to change the scale of the independent and dependent variables
by a general linear transformation. If 7" is a\transformation, one
wants to “‘see’”” also the transfurmatlonS\\of the form HTH-,
where H is a given one-one change oﬁcoordmates -— ie., the
conjugate transformation. In this still e]ementary type of problem
it wonld be convenient to have a\quick way of displaying the
Fourier transform of the functlén ‘Also a display of the functions
defined by the derlvmtw@ﬁﬂ!rdl%nﬁdmﬂdsguﬁthe given functions for
final verification of the oﬁaracter of interesting points would be
convenient. The next ,siep should involve a study of implicit func-
tions, i.e., surfaces\ﬁ‘l n~dimensional spacc. Given a function
flay, o2 = .0.,.Q1'1l3 would like to display the appearance of all
desired two-ditwensional sections through the #-dimensional sur-
face. An 1d,ea\of the three-dimensional sections could be obtained
by mo Awo-dimensional sections continuously on the screen.
Obviqusly there are technical problems, e.g., of persistence of
]Ipage on the screen.

JThe next aim, still more ambitious, would be to provide for a
series of “experiences” with problems computed on the machine
so that its operator would acquire, after some practice, a feeling
for the four-dirnensional space as a result of such experimentation.
Imagine, for example, that we consider the problem, in three-
dimensions, of threading a given solid through a given closed space
curve, an exercise which involves “frying’’ since no simple criteria
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about projections seem to be sufficient to decide whether or not
one can push a given solid through a given curve. The physical
process of effecting such motion could be imitated by the machine
by making it compute the successive positions of the solid fol-
lowing given manual instructions (to be quickly transmitted
numerically) about the rotations and translations in the three-
dimensional space. The contact between the two sets would be
tested after each trial displacement.

An analogous problem is: to thread a four-dimensional solid
throungh a closed two-dimensional surface in X, Qomethmg Jor
which no tactile or visual expericnce exists. It is possubla that a
certain facility for such tasks could be developed, to some extent
at least, by continued cxperimentation on machines, avhich would
compute the course of motion of the given solid and display to
the operator the appearance of three- d_lmemwm& sections and at
least inform the operator of collisions bctwcen the given surface
and the object which has to be disjoint “pith it. The above is
perhaps an arbitrary and already very \complicated example of
what should be a systematic approdt:}.{ to acquiring, by practice,
a fecling for four-dimensional ‘gﬁ@iﬁéﬁﬁ?"brhwpfabmm above is
only partially topological, and{rincipally metrical. A systematic
attempt to familiarize oneseli”@ith the purely fopological properties
of complexes in four d_tmc?\\ons would, however, be more difficult
to formulate and to cde.

But even in twodimhensions, if one studies, instead of single
real valued {uncy.bns transformations defincd on the planc into
itself interestifghieuristic methods seem to be possible. For a given
tmnsformdtion T (p) of the plane we may want to study the prop-
crties ofy tihe iterates of this transformation, that is to say, the
asym}\otlc properties of the sequence of peints Te(p), to find
its fixed points, i.e., p = T(p), involution points, ie., points p
such that T#(p) —= p, k > 1, and invariant subsets 5 of the plane,
i, sets such that 7(S) = S, etc. If T is given analytically, it is.
a s:1mple matter to compute 7(p) for a great number of points 2.
We can then imagine a way to connect the given points to their
images by arrows on a display tube. Here, as in all previous

/
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problems, the question of which is the most instructive method
of display is not easily answered. Perhaps one could select the
given points on some curve, e.g., on a circle, and then display
the curve consisting of the image of this circle. Suppose we want
to find the fixed point of a transformation. The proposal would
be to start with a circle, look at its image, then decide upon a
suitable motion of the given circle so that its image will fall
essentially inside or essentially outside itself. Then from Brot¥er’s
fixed point theorem we would know that the scarch for the, fixed
point is narrowed to the interior of the curve. There should then
be a rapid manual method of “steering” the initial\curve whose
image is displayed, in any desired direction, of ,chimging its size,
and possibly the eccentricity if we start withyan ellipse, eic.

All this applics, mutatis mutandis, in theM-dimensional space,
where we would of course be able to d,is'ﬁlay only various plane
scctions, or, perhaps better, a 2-dimengional scction of an initially
given sphere and its image. One trzizisformation for which such a
study was undertaken is the one.discussed in Chapter 11, Section 3.
This transformation %0\51\53&135 ml jﬁ::gelf all the information about the
general algebraic equation otthe #thbraer. There are many still un-
solved questions concer apg its fixed points, invariant manifolds,
etc. John Ackley h t:o&ed the “Whirlwind” machine at the Lin-
coln Laboratories, ob M.1.T., in Cambridge, Massachusetts, for a
preliminary study’ of this sort.

Computatiojl\s on a machinc are particularly well suited for
the dis]%?";o\f asymptotic properties of iterates. It is obvious that
in ordes o’ tabulate only the interesting points, it is preferable to
have a visual evaluation of the iterated properties of the many
~p@ints rather than print out an enormous number of numerical
yalues. The latter have to be evaluated by a person in order,
one by one, and it is in general very hard to guess in advance
what properties of the sequence one wants to look at — it seems
difficult to foresee and put in a code ahead of time the desired
criteria for selecting significant special cases.

Another example of such interplay between the operations
performed on the machine and displayed visually, and the
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decisions made by the operator upon evaluation of the results:
such cooperation might be useful in finding solufions to dif-
ferential equations with boundary values. In the simplest cases,
those of the ordinary differential equations, say of the 2nd order,
with prescribed boundary conditions at 2 points, one could
satisfy the conditions at the first given point, then by integrating
on the machine presumably foliow the trend of the solution before
it is computed at the second boundary and by sensing the trend,
so to say, modify the arbitrary parameter assumed at the st
point, e.g., the value of the 1st derivative. It is clear that @)
saving in time can be obtained by an intclligent intervedtion
quite beyond any automatic coding of obvious changes{™\

But even in the study of systems of cquations of t ellst order,
by exhibiting the vector field on a screen (in 3 or & figher number
of dimensions showing the vector field in projfeq:ions) one could
guess the location of singular points ““at a glan &2yand also perhaps
form an idea of the behavior of solutions itfhie large. To give an
example: suppose the problem concexns” the behavior of the
magnetic lincs of force in space due to steady currents flowing on
a given curve or a system of WWIS%HSFQ%OS}%& in Sectior} 6
of the present chapter. C. Luehranfl the writer considered solution
of the problem by computaj;iciﬁs on an electronic machine in two
cases. 1. In three-dime na'icma,l space a current flows on two
infinite lines; one of theése is the x-axis, the other the line ¥ = 0,
z=1, 2. The cur;eﬁ{'“ﬂows through a closed curve forming a
clover-leaf knot. Ahe problem was 10 study the qualitative topo-
logical featureg(of the field of all the lines of force in space. The
general erqu'\tc properties of the fields of lines of force are not
understoddh — they are of practical interest now in magneto-
hydr¢dyramics and in astronomy.

The”computations were performed on the “Maniac” in Los
Alamos. This work is still procecding, but withott a good mechanism
of display, the progress in evaluating the preperties of the lines
of force is slow and the evaluation of the printed data laborious.
A visual display would certainly permit onc to diminish the
number of trials, ie., the initial points through which one com-

Q
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putes the lines of force.

In the study of partial differential equations the advantage of a
quick survey of results would, it seems, be even greater. As an
example of what we have in mind, the following investigation
should bc mentioned. A rather deep conncction appears to exist
between the behavior of solutions of the Hamilton-Jacobi partial
differential equation

(Bs/0x)® 4 (8s/oy)® + (8s]oz)* + V(w, y, ) = &s/0fa_

on onehand, and the problem of the random walk, witlf a‘variable
stcp proportional to the given function ¥, described-by a diffusion
equation. The conjecture, proved so far only in7tile ‘case of one
independent space variable and still open for two or more dimen-
sions, concerns the following problem: Given a function Viz,,
%5, . . ., ¥,) considcr, at time ¢, the front’&f’the Hamilton-Jacobi
wave S0 ) = ¢ originating from amy point 2°. This surface is
obtainable by the Huyghens constrfiction of envelopes of spheres.
On the other hand, consider the. c:fest of the probability function
w(2y, %y, . . ., 1) corresponding 3o a random walk from z° with a
step whose variable TégtRqE BrapEPtHIA] at the position (xy,
2y, ..., x,) to the valuelof the given function V (cf. Everett,
Ulam [6]). . +C

By the cyest of ‘gh}}}xobabﬂity function w we mcan the surface
t = f(x, «%) defined by ow/0f = 0. The conjecture states that f
and S are sihply related; for # = 1 one shows f~ S under
suitable Qol}gh'fions. Apart from this, we should like to state here
the beligf that the field of curves or sheaves of surfaces cor-
resporiding to the equation S == ¢, where S is the Hamilton-Jacob
iyr{ét’i’on, if suitably displayed on a screen, would help form ideas
about the behavior of solutions of a dynamic problem for a great
varicty of initial conditions all at once.

In problems of hydrodynamics it is again obvious that for
qualitative studies, e.g., of the progress of mixing of two fluids,

Q"

~ a display of the position of the interface between the two fluids

or gases — starting from an unstable configuration — would
permit good choices of initial conditions and significant values of
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parameter. (One of these parameters is the. value of the initial
acceleration of the lighter fluid into the heavier one.} Here
again, in absence of & priori knowledge of the character of the
motion, it is very hard to code in advance automatic criteria for
the selection of such parameters.

it is in the study of games and in the actual playing of games.
that synergesis, i.e., the continuing collaboration between the
machine and its operator should prove of immediate value. Recent-

computers to play games like checkers {Samuels, IBM Reseatch
Lab., on the 704) and chess {Cf. Kister et al. [1]). While in the sitnp-
ler game of checkers the existing code allows the machingte play 2
very good opening and middle game, in the game of cheds the quali-
ty of the play, as coded so far, is very rudimentary JNO doubt prog-
ress will be made during the next few years, but; ﬁk}e‘miter does not
pelieve that chess games of master qualitywill be achieved in the
near future! O

An intermediate, and in a way lesg aptbitious, program would
be to have codes prepared for agsiét{ng a human chess player
to explore on a machine certawgg}aﬁq&gae%g%?_ q’%nmoves quite
far ahead (i.e., for perhaps \6—8 moves) and theh to flash the
tentative positions on g screen. This, when coupled with cal-
culations of various evaluation functions generalizing those already
coneeived would possibly improve the game!

To play a ‘“fair gamie”’, the two opponents would have to ‘have
at their disposa&tm;b identical machines! In other words, if seems
that a c_omRu\"ﬁg machine could act as a “second”’ of the player,
helping tovanalyze the positions. To the writer at least, an in-
telli enj:})i’ogram of this sort seems nearer at hand than a com-
pletely’ automatic program enabling the machine to play a high
quality game. Going beyond the existing games, it is perhaps
permissible to speculate on the invention of cntirely new games
to be played between two players, each provided with a computer.

All the examples mentioned above deal with mcthods to
facilitate solution of given problems by some general heuristic
methods — either of Monte Carlo type, or consisting of specific

Q)
ly, some progress bas been achieved in coding for electromie,
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numecrical work. Beyond this it seems that the computing machines
will soon be able, at least in elementary cases, to prove theorems
in the customary mathematical formalisms. The interesting work
of N. Rochester and his associates (Gelernter, Roth, and others)
makes it appear plausible that an automatic code will soon be
available for proving theorems in certain elementary domains
(in Euclid’s geometry, for example), It will probably take &long
time until an analogous program will be realized for more extcnswc
mathematical disciplines. Here again it could be pomt\ec‘t Dut that
an intermediate program of collaboration betweeh a human
operator and a machine seems easier of accomphshmenﬂ In fact,
one may start by practicing this by proving theg!‘cmb in Euclidean
geometry about triangles, etc.; or certainly, if one wanted to
automatize proofs in projective geometry,{&ﬁzspﬁay of the geometric
constructions envisaged by a human “operator plus automatic
scarching by the machine for the rgutine syllogisms might provide
a quicker way fo find formal proodfs.

NN
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